当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reduced leakage current, enhanced energy storage and dielectric properties in (Ce,Mn)-codoped Ba0.6Sr0.4TiO3 thin film
Ceramics International ( IF 5.1 ) Pub Date : 2018-12-01 , DOI: 10.1016/j.ceramint.2018.08.082
J. Qian , C.H. Yang , Y.J. Han , X.S. Sun , L.X. Chen

Abstract Ba0.6Sr0.4TiO3, Ce-doped Ba0.6Sr0.4TiO3, Mn-doped Ba0.6Sr0.4TiO3, (Ce,Mn) co-doped Ba0.6Sr0.4TiO3 (abbreviated as BST, BSTCe, BSTMn, BSTCeMn) thin films were deposited on LaNiO3(LNO)/Si substrates. The effects of ion doping on the microstructure and electrical properties of BST-based thin film have been researched and discussed. The X-ray diffraction pattern shows that each sample has pure perovskite phase structure with high (l00) peaks. The microstructure of each film is quite dense with uniform size. Compared with pure BST, improved insulating properties can be found in ion-doped BST thin films. For all the films, Ohmic conduction, space charge limited conduction and interface-limited Fowler-Nordheim tunneling should be the main conduction mechanisms within different electric field regions. For the case of BSTCeMn thin film, it possesses enhanced energy storage performance with a recoverable energy storage density (18.01 J/cm3) and a energy storage efficiency (75.1%) under 2000 kV/cm. This can be closely related to the small remanent polarization value (Pr= 1.89 μC/cm2), large maximum polarization value (Pmax= 28.08 μC/cm2) as well as big maximum electric field (2000 kV/cm). Also, it exhibits a large dielectric constant of 405 and a small dissipation factor of 0.075 at 500 kHz.

中文翻译:

(Ce,Mn)-共掺杂 Ba0.6Sr0.4TiO3 薄膜中降低漏电流、增强能量存储和介电性能

摘要 Ba0.6Sr0.4TiO3、Ce掺杂Ba0.6Sr0.4TiO3、Mn掺杂Ba0.6Sr0.4TiO3、(Ce,Mn)共掺杂Ba0.6Sr0.4TiO3(简称BST、BSTCe、BSTMn、BSTeMn)薄薄膜沉积在 LaNiO3(LNO)/Si 衬底上。已经研究和讨论了离子掺杂对BST基薄膜的微观结构和电学性能的影响。X 射线衍射图表明每个样品都具有高 (l00) 峰的纯钙钛矿相结构。每个薄膜的微观结构非常致密,尺寸均匀。与纯 BST 相比,离子掺杂的 BST 薄膜具有更高的绝缘性能。对于所有薄膜,欧姆传导、空间电荷限制传导和界面限制 Fowler-Nordheim 隧穿应该是不同电场区域内的主要传导机制。对于 BSTCeMn 薄膜,它具有增强的储能性能,具有可恢复的储能密度(18.01 J/cm3)和低于 2000 kV/cm 的储能效率(75.1%)。这可能与较小的剩余极化值(Pr= 1.89 μC/cm2)、较大的最大极化值(Pmax= 28.08 μC/cm2)以及较大的最大电场(2000 kV/cm)密切相关。此外,它在 500 kHz 下表现出 405 的大介电常数和 0.075 的小损耗因数。
更新日期:2018-12-01
down
wechat
bug