当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extraordinary lithium ion storage capability achieved by SnO2 nanocrystals with exposed {221} facets†
Nanoscale ( IF 5.8 ) Pub Date : 2018-08-08 00:00:00 , DOI: 10.1039/c8nr04513e
Bomin Li 1, 2, 3, 4, 5 , Yan Yan 1, 2, 3, 4, 5 , Chentong Shen 1, 2, 3, 4, 5 , Yang Yu 1, 2, 3, 4, 5 , Qinghong Wang 1, 2, 3, 4, 5 , Mingkai Liu 1, 2, 3, 4, 5
Affiliation  

Rational design of SnO2 nanomaterials with superior architectures and excellent electrochemical properties is highly desirable for lithium ion storage. Here, several SnO2 nanoparticles with different exposed crystal planes, such as {101}, {110} and {221} facets, are developed and further embedded into graphene/carbon nanotube (G/CNT) networks, achieving highly conductive carbon/SnO2 films (C/SnO2) with homogeneous dispersion of SnO2 nanoparticles. Three-dimensional (3D) G/CNT networks with highly porous structures and electronic contacts with imbedded SnO2 nanoparticles provide excellent pathways for transfer of electrons and ions and further buffer structural changes of SnO2 nanocrystals during lithium-ion insertion/extraction processes. Close contact between G/CNT matrix and embedded SnO2 nanoparticles ensures that all high-energy {221} facets of SnO2 are exploited during rapid electrochemical reactions. The high electrical conductivity of G/CNT networks can further prevent pulverization of nanostructured SnO2. As a result, C/SnO2 film with 90% content of octahedral SnO2 nanocrystals (C/SnO2-O (90%)) exhibits superior reversible specific capacity of 1008 mA h g−1 at 0.1 A g−1, excellent rate capability, low internal resistance and long-term cycling stability for 1000 cycles. These results further confirm that SnO2 nanocrystals with high-energy {221} facets can provide numerous active sites for lithium ion storage than other SnO2 nanomaterials.

中文翻译:

具有{221}裸露面的 SnO 2纳米晶体实现了非凡的锂离子存储能力

具有优异的结构和优异的电化学性能的SnO 2纳米材料的合理设计对于锂离子存储是非常需要的。在这里,开发了几种具有不同暴露晶面的SnO 2纳米粒子,例如{101},{110}和{221}面,并将其进一步嵌入到石墨烯/碳纳米管(G / CNT)网络中,从而实现了高导电性的碳/ SnO 2个薄膜(C / SnO 2),具有均匀分散的SnO 2纳米颗粒。具有高度多孔结构的三维(3D)G / CNT网络以及与嵌入的SnO 2纳米粒子的电子接触为电子和离子的转移以及进一步缓冲SnO的结构变化提供了绝佳的途径锂离子插入/提取过程中出现2个纳米晶体。G / CNT基质与嵌入的SnO 2纳米颗粒之间的紧密接触可确保在快速电化学反应过程中充分利用SnO 2的所有高能{221}面。G / CNT网络的高电导率可以进一步防止纳米结构SnO 2的粉化。结果,具有90%的八面体SnO 2纳米晶体(C / SnO 2 -O(90%))的C / SnO 2膜在0.1 A g -1下表现出1008 mA hg -1的优异可逆比电容。,出色的倍率能力,低内阻和1000次循环的长期循环稳定性。这些结果进一步证实,具有高能量{221}面的SnO 2纳米晶体可以比其他SnO 2纳米材料提供许多用于锂离子存储的活性位点。
更新日期:2018-08-08
down
wechat
bug