当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow‐Based Deacidification of Geobacter sulfurreducens Biofilms Depends on Nutrient Conditions: a Microfluidic Bioelectrochemical Study
ChemElectroChem ( IF 3.5 ) Pub Date : 2018-09-19 , DOI: 10.1002/celc.201800968
Mir Pouyan Zarabadi 1 , Steve J. Charette 2, 3, 4 , Jesse Greener 1, 5
Affiliation  

Biofilms from Geobacter sulfurreducens are promising materials for new bioelectrochemical systems. To improve the performance of such systems, limitations related to biofilm acidification should be addressed. This work examines a long‐held assumption that liquid flow can deacidify biofilm pH by enhancing molecular mass transport in the biofilm subdomain. A microfluidic electrochemical system was used to measure changes to biofilm pH in situ while accurately modulating hydrodynamic conditions under turnover, nutrient‐limited and starvation conditions. We discovered that increased flow rates could indeed mitigate biofilm acidification, but not under turnover concentrations, which are the predominant conditions used in research studies. This effect is demonstrated with the observation that relative increases to bio‐current under increased flow rates were stronger for experiments conducted under nutrient‐limited concentrations compared to turnover concentrations. This can open the way for a solution to poor performance of some bioelectrochemical systems at low concentrations.

中文翻译:

还原性土壤细菌生物膜的基于流的脱酸取决于营养条件:微流控生物电化学研究

降低细菌的土壤细菌生物膜是用于新的生物电化学系统的有前途的材料。为了改善此类系统的性能,应解决与生物膜酸化有关的局限性。这项工作检验了一个长期存在的假设,即液体流动可以通过增强生物膜亚域中的分子质量传输来使生物膜pH降低酸度。微流电化学系统用于原位测量生物膜pH的变化同时精确调节周转,养分受限和饥饿条件下的水动力条件。我们发现增加的流速确实可以减轻生物膜的酸化作用,但是在周转浓度下却不能,这是研究中使用的主要条件。观察到的结果证明了这种效果,即相对于周转浓度,在营养受限的浓度下进行的实验中,流速增加时相对于生物电流的相对增加更强。这可以为解决某些低浓度生物电化学系统性能低下的问题开辟道路。
更新日期:2018-09-19
down
wechat
bug