当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Measuring the competition between bimolecular charge recombination and charge transport in organic solar cells under operating conditions†‡
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2018-07-25 00:00:00 , DOI: 10.1039/c8ee01559g
Michael C. Heiber 1, 2, 3, 4, 5 , Takashi Okubo 6, 7, 8, 9 , Seo-Jin Ko 1, 2, 3, 4, 10 , Benjamin R. Luginbuhl 1, 2, 3, 4, 10 , Niva A. Ran 1, 2, 3, 4, 10 , Ming Wang 1, 2, 3, 4, 10 , Hengbin Wang 2, 3, 4, 11 , Mohammad Afsar Uddin 12, 13, 14, 15 , Han Young Woo 12, 13, 14, 15 , Guillermo C. Bazan 1, 2, 3, 4, 10 , Thuc-Quyen Nguyen 1, 2, 3, 4, 10
Affiliation  

The rational design of new high performance materials for organic photovoltaic (OPV) applications is largely inhibited by a lack of design rules for materials that have slow bimolecular charge recombination. Due to the complex device physics present in OPVs, rigorous and reliable measurement techniques for charge transport and charge recombination are needed to construct improved physical models that can guide materials development and discovery. Here, we develop a new technique called impedance-photocurrent device analysis (IPDA) to quantitatively characterize the competition between charge extraction and charge recombination under steady state operational conditions. The measurements are performed on actual lab scale solar cells, have mild equipment requirements, and can be integrated into normal device fabrication and testing workflows. We perform IPDA tests on a broad set of devices with varying polymer:fullerene blend chemistry and processing conditions. Results from the IPDA technique exhibit significantly improved reliability and self-consistency compared to the open-circuit voltage decay technique (OCVD). IPDA measurements also reveal a significant negative electric field dependence of the bimolecular recombination coefficient in high fill factor devices, a finding which is inaccessible to most other common techniques and indicates that many of these techniques may overestimate the value that is most relevant for describing device performance. Future work utilizing IPDA to build structure–property relationships for bimolecular recombination will lead to enhanced design rules for creating efficient OPVs that are suitable for commercialization.

中文翻译:

在操作条件下测量有机太阳能电池中双分子电荷复合与电荷传输之间的竞争

缺乏用于慢速双分子电荷复合的材料的设计规则,很大程度上抑制了用于有机光伏(OPV)应用的新型高性能材料的合理设计。由于OPV中存在复杂的设备物理原理,因此需要用于电荷传输和电荷重组的严格而可靠的测量技术,以构建可指导材料开发和发现的改进物理模型。在这里,我们开发了一种称为阻抗光电流器件分析(IPDA)的新技术,以定量表征稳态工作条件下电荷提取和电荷重组之间的竞争。测量是在实际实验室规模的太阳能电池上进行的,对设备的要求不高,并且可以集成到正常的设备制造和测试工作流程中。我们在各种设备上执行IPDA测试,这些设备具有不同的聚合物:富勒烯共混物化学和加工条件。与开路电压衰减技术(OCVD)相比,IPDA技术的结果显示出显着改善的可靠性和自洽性。IPDA测量还揭示了高填充因子设备中双分子复合系数的显着负电场依赖性,这一发现是大多数其他常用技术所无法企及的,并且表明许多这些技术可能高估了与描述设备性能最相关的值。利用IPDA建立双分子重组的结构-性质关系的未来工作将导致增强的设计规则,以创建适用于商业化的有效OPV。
更新日期:2018-07-25
down
wechat
bug