当前位置: X-MOL 学术Polym. Degrad. Stabil. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure evolution of polyimide films induced by electron beam irradiation-load coupling treatment
Polymer Degradation and Stability ( IF 6.3 ) Pub Date : 2018-07-25 , DOI: 10.1016/j.polymdegradstab.2018.07.020
Shan-Shan Dong , Wen-Zhu Shao , Li Yang , Hui-Jian Ye , Liang Zhen

Polyimide films are widely used in space with extreme environments, where high energy beam irradiation and corresponding coupling treatment could occur. The combined effect of high energy electrons (1.2 MeV) and high tensile stress (50 MPa) on the degradation behavior of polyimide films was studied by means of scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mechanical testing. The degradation of polyimide films was evaluated by analyzing the microstructure and mechanical properties. The results indicated that the external tensile stress and irradiation coupling treatment resulted in the breakage of a larger number of chemical bonds and greater deterioration of the surface quality when compared with the irradiated polyimide samples. After irradiation-load coupling treatment, numerous micro-cracks were formed on the polyimide surface, facilitating the diffusion of oxygen into polyimide films and thus increasing the probability of free radical reactions. Moreover, the coupling treatment led to a more significant decrease in tensile strength and elongation of polyimide films by 10% and 35%, respectively. The mechanism of molecular chains' scission and crosslinking as well as correlations between molecular chains and mechanical performances were discussed. The obtained results indicated that the external tensile stress accelerates the degradation process during electron beam irradiation; thus, the tensile stress potentially seriously deteriorates polyimide film properties in irradiated environments.



中文翻译:

电子束辐照-载荷耦合处理诱导聚酰亚胺薄膜的微观结构演变

聚酰亚胺膜广泛用于极端环境中的空间,在极端环境中可能发生高能束辐照和相应的耦合处理。通过扫描电子显微镜,原子力显微镜,X射线衍射,傅立叶变换红外光谱,X射线等手段研究了高能电子(1.2 MeV)和高拉伸应力(50 MPa)对聚酰亚胺薄膜降解行为的综合影响。射线光电子能谱和机械测试。通过分析显微组织和力学性能评估了聚酰亚胺薄膜的降解。结果表明,与经辐照的聚酰亚胺样品相比,外部拉伸应力和辐照偶联处理导致大量化学键的断裂和表面质量的更大恶化。辐照-负载偶合处理后,在聚酰亚胺表面上形成了许多微裂纹,促进了氧向聚酰亚胺膜中的扩散,从而增加了自由基反应的可能性。此外,偶联处理导致聚酰亚胺膜的抗张强度和伸长率分别显着降低了10%和35%。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。在聚酰亚胺表面上形成了许多微裂纹,促进了氧向聚酰亚胺膜中的扩散,从而增加了自由基反应的可能性。此外,偶联处理导致聚酰亚胺膜的抗张强度和伸长率分别显着降低了10%和35%。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。在聚酰亚胺表面上形成了许多微裂纹,促进了氧向聚酰亚胺膜中的扩散,从而增加了自由基反应的可能性。此外,偶联处理导致聚酰亚胺膜的抗张强度和伸长率分别显着降低了10%和35%。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。促进氧扩散到聚酰亚胺薄膜中,从而增加了自由基反应的可能性。此外,偶联处理导致聚酰亚胺膜的抗张强度和伸长率分别显着降低了10%和35%。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。促进氧扩散到聚酰亚胺薄膜中,从而增加了自由基反应的可能性。此外,偶联处理导致聚酰亚胺膜的抗张强度和伸长率分别显着降低了10%和35%。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。讨论了分子链断裂和交联的机理,以及分子链与机械性能之间的关系。所得结果表明,外部拉应力加速了电子束辐照过程中的降解过程。因此,拉伸应力可能在辐照环境中严重破坏聚酰亚胺膜的性能。

更新日期:2018-07-25
down
wechat
bug