当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generation, transport and detection of valley-locked spin photocurrent in WSe 2 –graphene–Bi 2 Se 3 heterostructures
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2018-07-23 , DOI: 10.1038/s41565-018-0195-y
Soonyoung Cha , Minji Noh , Jehyun Kim , Jangyup Son , Hyemin Bae , Doeon Lee , Hoil Kim , Jekwan Lee , Ho-Seung Shin , Sangwan Sim , Seunghoon Yang , Sooun Lee , Wooyoung Shim , Chul-Ho Lee , Moon-Ho Jo , Jun Sung Kim , Dohun Kim , Hyunyong Choi

Quantum optoelectronic devices capable of isolating a target degree of freedom (DoF) from other DoFs have allowed for new applications in modern information technology. Many works on solid-state spintronics have focused on methods to disentangle the spin DoF from the charge DoF1, yet many related issues remain unresolved. Although the recent advent of atomically thin transition metal dichalcogenides (TMDs) has enabled the use of valley pseudospin as an alternative DoF2,3, it is nontrivial to separate the spin DoF from the valley DoF since the time-reversal valley DoF is intrinsically locked with the spin DoF4. Here, we demonstrate lateral TMD–graphene–topological insulator hetero-devices with the possibility of such a DoF-selective measurement. We generate the valley-locked spin DoF via a circular photogalvanic effect in an electric-double-layer WSe2 transistor. The valley-locked spin photocarriers then diffuse in a submicrometre-long graphene layer, and the spin DoF is measured separately in the topological insulator via non-local electrical detection using the characteristic spin–momentum locking. Operating at room temperature, our integrated devices exhibit a non-local spin polarization degree of higher than 0.5, providing the potential for coupled opto-spin–valleytronic applications that independently exploit the valley and spin DoFs.



中文翻译:

WSe 2-石墨烯-Bi 2 Se 3异质结构中谷锁自旋光电流的产生,运输和检测

能够将目标自由度(DoF)与其他DoF隔离的量子光电设备已经在现代信息技术中得到了新的应用。固态自旋电子学上的许多工作都集中在使自旋DoF与电荷DoF 1分离的方法上,但是许多相关问题仍未解决。尽管最近出现的原子薄的过渡金属二硫属金属双金属卤化物(TMDs)使得谷值伪自旋可以用作替代DoF 2,3,但自旋DoF与谷值DoF分离并不容易,因为时间反转谷点DoF本质上是锁定的与旋转自由度4。在这里,我们演示了横向TMD-石墨烯-拓扑绝缘体异质器件,并可能进行此类DoF选择性测量。我们在双电层WSe 2晶体管中通过圆形光电效应产生了谷值锁定自旋DoF 。然后,谷锁定的自旋光载体在亚微米长的石墨烯层中扩散,并且使用特征性的自旋动量锁定,通过非局部电学检测在拓扑绝缘体中分别测量自旋DoF。我们的集成器件在室温下运行,其非局部自旋极化度高于0.5,为耦合光-自旋-谷电子应用提供了潜力,可独立地利用波谷和自旋DoF。

更新日期:2018-07-24
down
wechat
bug