当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures
Science of the Total Environment ( IF 8.2 ) Pub Date : 2018-07-21 , DOI: 10.1016/j.scitotenv.2018.07.283
Mariusz Tomaszewski , Grzegorz Cema , Aleksandra Ziembińska-Buczyńska

Anaerobic ammonium oxidation (anammox) is an efficient process for nitrogen removal from wastewater, but its common use is limited by its relatively high optimal temperature (30 °C). One of the major bottlenecks of the implementation of mainstream PN/A process is the low activity of the anammox bacteria at low temperature. Due to this reason over the past years, numerous researchers have attempted to overcome this limitation. Recently it was shown that the reduced graphene oxide (RGO) can accelerate the anammox bacteria activity. However all these studies were performed at high temperatures (over 30 °C). Thus, in this study, supporting the anammox process at low temperatures (10–30 °C) by the RGO was investigated for the first time. The statistical analysis confirmed that RGO significantly affects the anammox activity. The stimulation effect of RGO on the anammox bacteria activity is of particular importance at low temperatures, when drastic decrease in process activity is observed at temperatures below 15 °C. The short-term experimental results demonstrated stimulation of the anammox activity at 13 °C, up to 28% by 15 mg RGO/L, but concentrations above 40 mg RGO/L caused the process inhibition, up to 30% with 50 mg RGO/L. However, the effect of RGO probably depends on the nanomaterial dose per biomass unit and the optimal range of this value was evaluated as 20 to 45 mg RGO/g VSS (volatile suspended solids).



中文翻译:

氧化石墨烯还原对低温下厌氧氨氧化生物活性的短期影响

厌氧铵氧化(厌氧氨)是一种从废水中去除氮的有效方法,但其相对较高的最佳温度(30°C)限制了其常规用途。主流PN / A工艺实施的主要瓶颈之一是厌氧氨氧化细菌在低温下的低活性。由于这一原因,在过去的几年中,许多研究人员试图克服这一局限性。最近显示还原的氧化石墨烯(RGO)可以加速厌氧氨氧化细菌的活性。但是,所有这些研究都是在高温(超过30°C)下进行的。因此,在本研究中,首次研究了由RGO支持的低温(10–30°C)厌氧氨氧化过程。统计分析证实,RGO显着影响厌氧氨氧化活性。当在低于15°C的温度下观察到过程活性急剧下降时,RGO对厌氧氨氧化细菌活性的刺激作用尤为重要。短期实验结果表明,在13°C时,厌氧氨氧化活性受15 mg RGO / L刺激高达28%,但浓度高于40 mg RGO / L则引起过程抑制,而对50 mg RGO / L刺激高达30%。 L. 但是,RGO的效果可能取决于每生物量单位的纳米材料剂量,该值的最佳范围被评估为20至45 mg RGO / g VSS(挥发性悬浮固体)。短期实验结果表明,在13°C时,厌氧氨氧化活性受15 mg RGO / L刺激高达28%,但浓度高于40 mg RGO / L则引起过程抑制,而对50 mg RGO / L刺激高达30%。 L. 但是,RGO的效果可能取决于每生物量单位的纳米材料剂量,该值的最佳范围被评估为20至45 mg RGO / g VSS(挥发性悬浮固体)。短期实验结果表明,在13°C时,厌氧氨氧化活性受15 mg RGO / L刺激高达28%,但浓度高于40 mg RGO / L则引起过程抑制,而对50 mg RGO / L刺激高达30%。 L. 但是,RGO的效果可能取决于每生物量单位的纳米材料剂量,该值的最佳范围被评估为20至45 mg RGO / g VSS(挥发性悬浮固体)。

更新日期:2018-07-22
down
wechat
bug