当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips
Small ( IF 13.0 ) Pub Date : 2018-07-19 , DOI: 10.1002/smll.201801147
Boris Apter 1 , Nadezda Lapshina 2 , Amir Handelman 1 , Boris D. Fainberg 3, 4 , Gil Rosenman 2
Affiliation  

Optical waveguiding phenomena found in bioinspired chemically synthesized peptide nanostructures are a new paradigm which can revolutionize emerging fields of precise medicine and health monitoring. A unique combination of their intrinsic biocompatibility with remarkable multifunctional optical properties and developed nanotechnology of large peptide wafers makes them highly promising for new biomedical light therapy tools and implantable optical biochips. This Review highlights a new field of peptide nanophotonics. It covers peptide nanotechnology and the fabrication process of peptide integrated optical circuits, basic studies of linear and nonlinear optical phenomena in biological and bioinspired nanostructures, and their passive and active optical waveguiding. It is shown that the optical properties of this generation of bio‐optical materials are governed by fundamental biological processes. Refolding the peptide secondary structure is followed by wideband optical absorption and visible tunable fluorescence. In peptide optical waveguides, such a bio‐optical effect leads to switching from passive waveguiding mode in native α‐helical phase to an active one in the β‐sheet phase. The found active waveguiding effect in β‐sheet fiber structures below optical diffraction limit opens an avenue for the future development of new bionanophotonics in ultrathin peptide/protein fibrillar structures toward advanced biomedical nanotechnology.

中文翻译:

肽纳米光子学:从光学波导到精确医学和多功能生物芯片

在生物启发的化学合成肽纳米结构中发现的光波导现象是一种新的范例,可以彻底改变新兴的精确医学和健康监测领域。它们固有的生物相容性与卓越的多功能光学特性以及发达的大型肽晶圆纳米技术的独特结合,使它们在新型生物医学光疗工具和可植入光学生物芯片方面具有广阔的前景。这篇综述突出了肽纳米光子学的新领域。它涵盖了肽纳米技术和肽集成光学电路的制造工艺,生物和生物启发性纳米结构中线性和非线性光学现象的基础研究以及它们的被动和主动光学波导。结果表明,这一代生物光学材料的光学特性受基本的生物过程支配。肽二级结构重折叠后是宽带光吸收和可见的可调荧光。在肽光波导中,这种生物光学效应导致从天然α螺旋相的无源波导模式切换到β折叠相的有源波导模式。在低于光学衍射极限的β片状纤维结构中发现的主动波导效应为超薄肽/蛋白质原纤维结构中的新型生物纳米光子学向高级生物医学纳米技术的未来发展开辟了道路。在肽光波导中,这种生物光学效应导致从天然α螺旋相的无源波导模式切换到β折叠相的有源波导模式。在低于光学衍射极限的β片状纤维结构中发现的主动波导效应为超薄肽/蛋白质原纤维结构中的新型生物纳米光子学向高级生物医学纳米技术的未来发展开辟了道路。在肽光波导中,这种生物光学效应导致从天然α螺旋相的无源波导模式切换到β折叠相的有源波导模式。在低于光学衍射极限的β片状纤维结构中发现的主动波导效应为超薄肽/蛋白质原纤维结构中的新型生物纳米光子学向高级生物医学纳米技术的未来发展开辟了道路。
更新日期:2018-07-19
down
wechat
bug