当前位置: X-MOL 学术WIREs Comput. Mol. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Eukaryotic Cell Dynamics from Crawlers to Swimmers.
Wiley Interdisciplinary Reviews: Computational Molecular Science ( IF 11.4 ) Pub Date : 2018-07-19 , DOI: 10.1002/wcms.1376
H G Othmer 1
Affiliation  

Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.

中文翻译:

从爬行者到游泳者的真核细胞动力学。

运动需要将力传递到环境,并且运动细胞坚固耐用(尽管不是很优雅),设计的纳米机器通常可以通过更改所使用的力传递方式来应对各种环境条件。与人类一样,可用的模式包括从爬行时的瞬间附着到游泳时的形状变形,以及在细胞水平上涉及感知环境的机械特性并适当更改模式的模式。尽管许多类型的细胞可以使其运动方式适应其微环境(ME),但我们对它们如何检测,转导和处理来自ME的信息以确定最佳方式的理解仍然是基本的。细胞的形状和完整性取决于其细胞骨架(CSK),因此,可能需要移动的形状变化涉及CSK的受控重塑。体内运动通常是对细胞外信号的响应,这需要能够检测此类信号并将其转换为运动所需的形状变化和力生成的能力。因此,纳米机器是复杂的,尽管对运动中涉及的各个组件的了解很多,但对诸如细菌之类的简单细胞中运动性的综合了解尚不多。在这篇综述中,我们讨论了对细胞运动的了解以及一些尚待解决的问题的最新进展。这需要能够检测此类信号并将其转换为运动所需的形状变化和力生成的能力。因此,纳米机器是复杂的,尽管对运动中涉及的各个组件的了解很多,但对诸如细菌之类的简单细胞中运动性的综合了解尚不多。在这篇综述中,我们讨论了对细胞运动的了解以及一些尚待解决的问题的最新进展。这需要能够检测此类信号并将其转换为运动所需的形状变化和力生成的能力。因此,纳米机器是复杂的,尽管对运动中涉及的各个组件的了解很多,但对诸如细菌之类的简单细胞中运动性的综合了解尚不多。在这篇综述中,我们讨论了对细胞运动的了解以及一些尚待解决的问题的最新进展。
更新日期:2018-07-19
down
wechat
bug