当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrofluorochromism at the single-molecule level
Science ( IF 56.9 ) Pub Date : 2018-07-19 , DOI: 10.1126/science.aat1603
Benjamin Doppagne 1 , Michael C. Chong 1 , Hervé Bulou 1 , Alex Boeglin 1 , Fabrice Scheurer 1 , Guillaume Schull 1
Affiliation  

Changing emission with charge states The fluorescence of electrochromic molecules changes with their charge state. Doppagne et al. studied the optical emission of single zinc-phthalocyanine molecules excited by electron injection from a scanning tunneling microscope tip. The molecules were adsorbed on salt layers grown on a gold surface, so that the cationic and neutral molecules could both be observed. The primary emission shifted to lower energy for the cation, and, in addition, vibrational side bands were observed. Science, this issue p. 251 The optical and vibrational transitions of a single zinc phthalocyanine molecule depend on its charge state. The interplay between the oxidation state and the optical properties of molecules is important for applications in displays, sensors, and molecular-based memories. The fundamental mechanisms occurring at the level of a single molecule have been difficult to probe. We used a scanning tunneling microscope (STM) to characterize and control the fluorescence of a single zinc-phthalocyanine radical cation adsorbed on a sodium chloride–covered gold (111) sample. The neutral and oxidized states of the molecule were identified on the basis of their fluorescence spectra, which revealed very different emission energies and vibronic fingerprints. The emission of the charged molecule was controlled by tuning the thickness of the insulator and the plasmons localized at the apex of the STM tip. In addition, subnanometric variations of the tip position were used to investigate the charging and electroluminescence mechanisms.

中文翻译:

单分子水平的荧光电致变色

随电荷状态改变发射电致变色分子的荧光随其电荷状态而变化。多巴涅等。研究了由扫描隧道显微镜尖端的电子注入激发的单个锌酞菁分子的光发射。分子被吸附在金表面上生长的盐层上,因此可以观察到阳离子和中性分子。初级发射转移到较低的阳离子能量,此外,还观察到振动边带。科学,这个问题 p。251 单个锌酞菁分子的光学和振动跃迁取决于其电荷状态。氧化态与分子光学特性之间的相互作用对于显示器、传感器和基于分子的存储器的应用很重要。在单个分子水平上发生的基本机制很难探究。我们使用扫描隧道显微镜 (STM) 来表征和控制吸附在氯化钠覆盖的金 (111) 样品上的单个锌酞菁自由基阳离子的荧光。分子的中性和氧化态是根据它们的荧光光谱确定的,这揭示了非常不同的发射能量和振动指纹。带电分子的发射是通过调整绝缘体的厚度和位于 STM 尖端顶点的等离子体来控制的。此外,尖端位置的亚纳米变化用于研究充电和电致发光机制。我们使用扫描隧道显微镜 (STM) 来表征和控制吸附在氯化钠覆盖的金 (111) 样品上的单个锌酞菁自由基阳离子的荧光。分子的中性和氧化态是根据它们的荧光光谱确定的,这揭示了非常不同的发射能量和振动指纹。带电分子的发射是通过调整绝缘体的厚度和位于 STM 尖端顶点的等离子体来控制的。此外,尖端位置的亚纳米变化用于研究充电和电致发光机制。我们使用扫描隧道显微镜 (STM) 来表征和控制吸附在氯化钠覆盖的金 (111) 样品上的单个锌酞菁自由基阳离子的荧光。分子的中性和氧化态是根据它们的荧光光谱确定的,这揭示了非常不同的发射能量和振动指纹。带电分子的发射是通过调整绝缘体的厚度和位于 STM 尖端顶点的等离子体来控制的。此外,尖端位置的亚纳米变化用于研究充电和电致发光机制。分子的中性和氧化态是根据它们的荧光光谱确定的,这揭示了非常不同的发射能量和振动指纹。带电分子的发射是通过调整绝缘体的厚度和位于 STM 尖端顶点的等离子体来控制的。此外,尖端位置的亚纳米变化用于研究充电和电致发光机制。分子的中性和氧化态是根据它们的荧光光谱确定的,这揭示了非常不同的发射能量和振动指纹。带电分子的发射是通过调整绝缘体的厚度和位于 STM 尖端顶点的等离子体来控制的。此外,尖端位置的亚纳米变化用于研究充电和电致发光机制。
更新日期:2018-07-19
down
wechat
bug