当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser
Science ( IF 44.7 ) Pub Date : 2018-07-19 , DOI: 10.1126/science.aar3102
Matthew A. Norcia 1 , Robert J. Lewis-Swan 1, 2 , Julia R. K. Cline 1 , Bihui Zhu 1, 3 , Ana M. Rey 1, 2 , James K. Thompson 1
Affiliation  

An atom-coupling cavity Ensembles of atoms have emerged as powerful simulators of many-body dynamics. Engineering controllable interactions between the atoms is crucial, be it direct or through a mediator. Norcia et al. developed a flexible alternative to existing atomic simulators in a system consisting of strontium atoms placed in an optical cavity. Two atomic states connected by a clock transition each served as an effective spin, with long-range spin-exchange interactions mediated by the cavity photons. With improvements, the setup is expected to be amenable to simulating nonequilibrium quantum dynamics and to have applications in metrology. Science, this issue p. 259 Engineered interactions between strontium atoms in an optical cavity lead to the emergence of a many-body energy gap. Laser-cooled and quantum degenerate atoms are being pursued as quantum simulators and form the basis of today’s most precise sensors. A key challenge toward these goals is to understand and control coherent interactions between the atoms. We observe long-range exchange interactions mediated by an optical cavity, which manifest as tunable spin-spin interactions on the pseudo spin-½ system composed of the millihertz linewidth clock transition in strontium. This leads to one-axis twisting dynamics, the emergence of a many-body energy gap, and gap protection of the optical coherence against certain sources of decoherence. Our observations will aid in the future design of versatile quantum simulators and the next generation of atomic clocks that use quantum correlations for enhanced metrology.

中文翻译:

锶超辐射激光器中腔介导的集体自旋交换相互作用

原子耦合腔 原子集合已成为多体动力学的强大模拟器。原子之间的工程可控相互作用至关重要,无论是直接的还是通过介体的。诺西亚等人。开发了一种灵活的替代现有原子模拟器的系统,该系统由放置在光学腔中的锶原子组成。通过时钟跃迁连接的两个原子状态各自充当有效自旋,具有由腔光子介导的长程自旋交换相互作用。通过改进,该设置有望用于模拟非平衡量子动力​​学并在计量学中得到应用。科学,这个问题 p。259 光学腔中锶原子之间的工程相互作用导致多体能隙的出现。激光冷却和量子简并原子正被用作量子模拟器,并构成当今最精确传感器的基础。实现这些目标的一个关键挑战是理解和控制原子之间的相干相互作用。我们观察到由光学腔介导的长程交换相互作用,这表现为在由锶中的毫赫兹线宽时钟跃迁组成的伪自旋 1/2 系统上的可调自旋-自旋相互作用。这导致单轴扭曲动力学,多体能隙的出现,以及光学相干的间隙保护免受某些退相干源的影响。我们的观察将有助于未来多功能量子模拟器和下一代原子钟的设计,这些原子钟使用量子相关性来增强计量。
更新日期:2018-07-19
down
wechat
bug