当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A micron-scale surface topography design reducing cell adhesion to implanted materials.
Scientific Reports ( IF 4.6 ) Pub Date : 2018-Jul-18 , DOI: 10.1038/s41598-018-29167-2
Francesco Robotti , Simone Bottan , Federica Fraschetti , Anna Mallone , Giovanni Pellegrini , Nicole Lindenblatt , Christoph Starck , Volkmar Falk , Dimos Poulikakos , Aldo Ferrari

The micron-scale surface topography of implanted materials represents a complementary pathway, independent of the material biochemical properties, regulating the process of biological recognition by cells which mediate the inflammatory response to foreign bodies. Here we explore a rational design of surface modifications in micron range to optimize a topography comprised of a symmetrical array of hexagonal pits interfering with focal adhesion establishment and maturation. When implemented on silicones and hydrogels in vitro, the anti-adhesive topography significantly reduces the adhesion of macrophages and fibroblasts and their activation toward effectors of fibrosis. In addition, long-term interaction of the cells with anti-adhesive topographies markedly hampers cell proliferation, correlating the physical inhibition of adhesion and complete spreading with the natural progress of the cell cycle. This solution for reduction in cell adhesion can be directly integrated on the outer surface of silicone implants, as well as an additive protective conformal microstructured biocellulose layer for materials that cannot be directly microstructured. Moreover, the original geometry imposed during manufacturing of the microstructured biocellulose membranes are fully retained upon in vivo exposure, suggesting a long lasting performance of these topographical features after implantation.

中文翻译:

微米级的表面形貌设计可减少细胞对植入材料的粘附。

植入材料的微米级表面形貌代表一种互补的途径,与材料的生化特性无关,它通过介导对异物的炎症反应的细胞来调节生物识别的过程。在这里,我们探索了微米范围内表面改性的合理设计,以优化由对称阵列的六边形凹坑组成的形貌,从而干扰了粘着剂的形成和成熟。当在体外在有机硅和水凝胶上使用时,抗粘剂形貌显着降低了巨噬细胞和成纤维细胞的粘附性以及它们对纤维化效应器的活化作用。此外,细胞与抗黏附拓扑结构的长期相互作用显着阻碍了细胞增殖,将粘附的物理抑制和完全扩散与细胞周期的自然进程联系起来。这种减少细胞粘附的解决方案可以直接集成到有机硅植入物的外表面上,还可以集成到用于不能直接微结构化的材料的保护性保形共形微结构生物纤维素层上。此外,在微结构化生物纤维素膜的制造过程中施加的原始几何形状在体内暴露时被完全保留,这表明这些地形特征在植入后具有长期持久的性能。以及用于不能直接微结构化的材料的保护性共形微结构生物纤维素保护层。此外,在微结构化生物纤维素膜的制造过程中施加的原始几何形状在体内暴露时被完全保留,这表明这些地形特征在植入后具有长期持久的性能。以及用于不能直接微结构化的材料的保护性共形微结构生物纤维素保护层。此外,在微结构化生物纤维素膜的制造过程中施加的原始几何形状在体内暴露时被完全保留,这表明这些地形特征在植入后具有长期持久的性能。
更新日期:2018-07-19
down
wechat
bug