当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
VO 2 (A) Nanorods: One-pot Synthesis, Formation Mechanism and Thermal Transformation to VO 2 (M)
Ceramics International ( IF 5.2 ) Pub Date : 2018-11-01 , DOI: 10.1016/j.ceramint.2018.07.157
Liangmiao Zhang , Jianing Yao , Yunfeng Guo , Fang Xia , Yuanyuan Cui , Bin Liu , Yanfeng Gao

The monoclinic VO2(M) has promising applications in intelligent devices but its preparation still requires improvement to permit cost-effective mass production. In this work, we report a 2-stage approach for producing VO2(M) nanorods by (1) hydrothermal reduction of vanadium pentoxide by sodium bisulfate at 220 °C to form VO2(A), and (2) subsequent thermal activated phase transformation of VO2(A) to VO2(M) at 350–450 °C in vacuum. The obtained VO2(M) nanorods showed a reversible phase transition temperature at about 62.5 °C and a narrow thermal hysteresis width of 10 °C. The mechanism of the hydrothermal reduction was studied by combined ex situ microscopic and diffraction characterization of cooled samples as well as in situ PXRD experiments, in which the hydrothermal synthesis was monitored in real time by time-resolved diffraction datasets. It was found that the hydrothermal synthesis of VO2(A) is a 4-step process: (1) reduction of V2O5 to form VO2(B) nanoparticles, (2) oriented attachment of VO2(B) nanoparticles along the [110] direction, (3) formation of VO2(B) nanorods as a results of oriented attachments, and (4) hydrothermal transformation of the metastable intermediate VO2(B) nanorods to VO2(A) nanorods. This clear understanding of the mechanism will help the further optimization of synthesis temperature and time for preparing VO2(A). This method provides a low temperature thermal treatment alternative and hence helps the reduction of cost for the production of VO2(M), bring the mass application of VO2(M) one step closer.

中文翻译:

VO 2 (A) 纳米棒:一锅法合成、形成机制和热转化为 VO 2 (M)

单斜 VO2(M) 在智能设备中具有广阔的应用前景,但其制备仍需要改进以实现具有成本效益的大规模生产。在这项工作中,我们报告了一种通过 (1) 在 220 °C 下用硫酸氢钠水热还原五氧化二钒形成 VO2(A) 和 (2) 随后的热活化相变来生产 VO2(M) 纳米棒的两阶段方法在真空中 350–450 °C 下将 VO2(A) 转化为 VO2(M)。所获得的 VO2(M) 纳米棒在约 62.5°C 处显示出可逆相变温度和 10°C 的窄热滞宽度。通过冷却样品的非原位显微镜和衍射表征以及原位 PXRD 实验相结合,研究了水热还原的机制,其中通过时间分辨衍射数据集实时监测水热合成。发现 VO2(A) 的水热合成是一个 4 步过程:(1) 还原 V2O5 形成 VO2(B) 纳米颗粒,(2) VO2(B)纳米颗粒沿 [110]方向定向附着, (3) VO2(B) 纳米棒作为定向附着的结果,以及 (4) 亚稳态中间体 VO2(B) 纳米棒水热转化为 VO2(A) 纳米棒。对机理的清楚理解将有助于进一步优化制备 VO2(A) 的合成温度和时间。该方法提供了一种低温热处理替代方案,从而有助于降低生产 VO2(M) 的成本,使 VO2(M) 的大规模应用更近一步。(2) VO2(B) 纳米粒子沿 [110] 方向定向附着,(3) 作为定向附着结果的 VO2(B) 纳米棒的形成,以及 (4) 亚稳态中间体 VO2(B) 纳米棒的水热转化VO2(A) 纳米棒。对机理的清楚理解将有助于进一步优化制备 VO2(A) 的合成温度和时间。该方法提供了一种低温热处理替代方案,从而有助于降低生产 VO2(M) 的成本,使 VO2(M) 的大规模应用更近一步。(2) VO2(B) 纳米粒子沿 [110] 方向定向附着,(3) 作为定向附着结果的 VO2(B) 纳米棒的形成,以及 (4) 亚稳态中间体 VO2(B) 纳米棒的水热转化VO2(A) 纳米棒。对机理的清楚理解将有助于进一步优化制备 VO2(A) 的合成温度和时间。该方法提供了一种低温热处理替代方案,从而有助于降低生产 VO2(M) 的成本,使 VO2(M) 的大规模应用更近一步。对机理的清楚理解将有助于进一步优化制备 VO2(A) 的合成温度和时间。该方法提供了一种低温热处理替代方案,从而有助于降低生产 VO2(M) 的成本,使 VO2(M) 的大规模应用更近一步。对机理的清楚理解将有助于进一步优化制备 VO2(A) 的合成温度和时间。该方法提供了一种低温热处理替代方案,从而有助于降低生产 VO2(M) 的成本,使 VO2(M) 的大规模应用更近一步。
更新日期:2018-11-01
down
wechat
bug