当前位置: X-MOL 学术Proc. Combust. Inst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame
Proceedings of the Combustion Institute ( IF 5.3 ) Pub Date : 2018-07-17 , DOI: 10.1016/j.proci.2018.06.228
Wang Han , Haiou Wang , Guido Kuenne , Evatt R. Hawkes , Jacqueline H. Chen , Johannes Janicka , Christian Hasse

Due to the complex multiscale interaction between intense turbulence and relatively weak flames, turbulent premixed flames in the thin and broken reaction zones regimes exhibit strong finite-rate chemistry and strain effects and are hence challenging to model. In this work, a laboratory premixed jet flame in the broken reaction zone, which has recently been studied using direct numerical simulation (DNS), is modeled using a large eddy simulation (LES)/dynamic thickened flame (DTF) approach with detailed chemistry. The presence of substantial flame thickening due to strong turbulence-chemistry interactions, which can be characterized by a high Karlovitz number (Ka), requires the DTF model to thicken the flame in an adaptive way based on the local resolution of flame scales. Here, an appropriate flame sensor and strain-sensitive flame thickness are used to automatically determine the thickening location and thickening factor, respectively. To account for finite-rate chemistry and strain effects, the chemistry is described in two different ways: (1) detailed chemistry denoted as full transport and chemistry (FTC), and (2) tabulated chemistry based on a strained premixed flamelet (SPF) model. The performance of the augmented LES/DTF approach for modeling the high Ka premixed flame is assessed through detailed a posteriori comparisons with DNS of the same flame. It is found that the LES/DTF/FTC model is capable of reproducing most features of the high Ka turbulent premixed flame including accurate CO and NO prediction. The LES/DTF/SPF model has the potential to capture the impact of strong turbulence on the flame structure and provides reasonable prediction of pollutant emissions at a reasonable computational cost. In order to identify the impact of aerodynamic strain, the turbulent flame structure is analyzed and compared with unstrained and strained premixed flamelet solutions. The results indicate that detailed strain effects should be considered when using tabulated methods to model high Ka premixed flames.



中文翻译:

卡洛维兹数高的湍流预混射流火焰的大型涡流模拟/动态增厚火焰建模

由于强烈的湍流和相对较弱的火焰之间复杂的多尺度相互作用,稀薄的和破碎的反应区中的湍流预混火焰表现出强大的有限速率化学和应变效应,因此难以建模。在这项工作中,最近使用直接数值模拟(DNS)研究了破碎反应区中实验室预混合的喷射火焰,并使用了具有详细化学成分的大型涡流模拟(LES)/动态加厚火焰(DTF)方法对其进行了建模。由于强烈的湍流-化学相互作用而出现大量的火焰增厚,其特征可以是较高的卡罗维兹数(Ka),则需要DTF模型根据火焰标尺的局部分辨率以自适应方式使火焰变厚。在此,适当的火焰传感器和应变敏感火焰厚度分别用于自动确定增厚位置和增厚系数。为了说明有限速率化学和应变效应,以两种不同方式描述化学:(1)详细化学表示为完全迁移和化学(FTC);(2)基于应变预混小火焰(SPF)的列表化学模型。通过详细的后验评估增强的LES / DTF方法对高Ka预混火焰进行建模的性能与相同火焰的DNS进行比较。发现LES / DTF / FTC模型能够再现高Ka湍流预混火焰的大多数特征,包括精确的CO和NO预测。LES / DTF / SPF模型有可能捕获强湍流对火焰结构的影响,并以合理的计算成本提供对污染物排放的合理预测。为了确定气动应变的影响,分析了湍流火焰结构,并将其与未应变和应变的预混小火焰溶液进行了比较。结果表明,在使用列表方法对高Ka预混火焰建模时,应考虑详细的应变效应。

更新日期:2018-07-18
down
wechat
bug