当前位置: X-MOL 学术J. Mol. Liq. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the anomalous composition dependence of viscosity and surface tension in refrigerant blends
Journal of Molecular Liquids ( IF 6 ) Pub Date : 2018-07-17 , DOI: 10.1016/j.molliq.2018.07.056
Wael A. Fouad , Lourdes F. Vega

The Polar PC-SAFT equation of state coupled with DGT and excess entropy scaling was applied to predict the phase, interfacial and transport properties of refrigerant blends. Results show the presence of several thermophysical anomalies in systems under consideration. The literature has always linked aneotropic behavior at the interface (extrema in surface tension) to azeotropic behavior (extrema in vapor pressure) at the bulk. However, a minimum in surface tension as a function of composition was predicted in this work for R-32 + R-1234yf zeotropic mixture. The system also exhibits a significant positive excess volume in comparison to other R-32 binary mixtures. The latter phenomena indicate the presence of excessively weak intermolecular interactions between both species. Furthermore, a minimum in viscosity as a function of composition was predicted for R-32 + R-143a binary mixture. This was attributed to the homogenous distribution of charges found in both symmetrical molecules which leads to molecular repulsion and structure breaking. On contrary, a maximum in viscosity as a function of composition was predicted for R-32 + R-125 binary mixture. This was attributed to strong charge-charge interactions between the highly fluorinated R-125 molecule and R-32. The latter promotes structure making as evidenced by the system's negative excess volume. A maximum in the viscosity was also predicted for R-152a + R-1234ze(E) binary mixture. Aggregate formation is promoted in this system due to the strong charge-charge interaction between the unshielded fluorine atom in R-1234ze(E) and the undisturbed methyl group in R-152a.



中文翻译:

关于制冷剂混合物中粘度和表面张力的异常成分依赖性

将极性PC-SAFT状态方程与DGT和过量熵定标相结合,以预测制冷剂混合物的相,界面和传输特性。结果表明,所考虑的系统中存在多个热物理异常。文献总是将界面处的各向异性行为(表面张力极值)与整体上的共沸行为(蒸气压极值)联系起来。但是,在这项工作中,对于R-32 + R-1234yf共沸混合物,预测了表面张力随成分的变化最小。与其他R-32二元混合物相比,该系统还显示出明显的正过剩体积。后一种现象表明两个物种之间存在过弱的分子间相互作用。此外,对于R-32 + R-143a二元混合物,预测了粘度的最低值随组成的变化。这归因于在两个对称分子中发现的均匀电荷分布,这导致分子排斥和结构破坏。相反,对于R-32 + R-125二元混合物,预测了粘度的最大值与组成的关系。这归因于高度氟化的R-125分子与R-32之间的强电荷-电荷相互作用。后者促进了结构制造,系统的负超量证明了这一点。还预测了R-152a + R-1234ze(对于R-32 + R-125二元混合物,可以预测到最大粘度随组成的变化。这归因于高度氟化的R-125分子与R-32之间的强电荷-电荷相互作用。后者促进了结构制造,系统的负超量证明了这一点。还预测了R-152a + R-1234ze(对于R-32 + R-125二元混合物,可以预测到最大粘度随组成的变化。这归因于高度氟化的R-125分子与R-32之间的强电荷-电荷相互作用。后者促进了结构制造,系统的负超量证明了这一点。还预测了R-152a + R-1234ze(E)二元混合物。由于R-1234ze(E)中未被保护的氟原子与R-152a中未被干扰的甲基之间的强电荷-电荷相互作用,在该系统中促进了聚集体的形成。

更新日期:2018-07-17
down
wechat
bug