当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors†
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2018-07-17 00:00:00 , DOI: 10.1039/c8qm00284c
Xiao-Man Cao 1, 2, 3, 4 , Zhi-Jia Sun 1, 2, 3, 4 , Si-Yu Zhao 1, 2, 3, 4 , Bing Wang 1, 2, 3, 4 , Zheng-Bo Han 1, 2, 3, 4
Affiliation  

Novel three-dimensional (3D) interconnected hierarchical sponge-like porous carbons (PCs) using Zn-based MOFs (Zn(tbip)) with two distinct particle sizes as precursors were prepared via a one-step pyrolysis process. The size effect of the precursor on the porous architecture has been evaluated in detail. The porous carbon derived from small-sized Zn(tbip) at 900 °C (denoted as C-S-900) possesses a hierarchical porous structure with the highest specific surface area (1356 m2 g−1), which benefits ion immersion and retention. C-S-900 demonstrates an ultrahigh specific capacitance of 369 and 226 F g−1 at 10 and 400 mV s−1 in a 6 mol L−1 KOH electrolyte, respectively. In addition, a symmetric flexible all-solid-state supercapacitor device was assembled with the electrode of C-S-900 and PVA/KOH gel electrolyte. The device can offer 96% capacity after 2000 stretching–bending cycles and operate micro-electronic devices displaying excellent mechanical robustness and cycling stability. The present work explored the relationship between the size effect of MOF precursors and the porous carbon architectures to optimize the performance of supercapacitors.

中文翻译:

MOF衍生的海绵状分层多孔碳,用于柔性全固态超级电容器

通过一步热解过程,使用具有两种不同粒径的基于Zn的MOF(Zn(tbip)),制备了新颖的三维(3D)互连分层海绵状多孔碳(PC)。已详细评估了前体对多孔结构的尺寸影响。在900°C下源自小尺寸Zn(tbip)的多孔碳(表示为CS-900)具有具有最高比表面积(1356 m 2 g -1)的分层多孔结构,有利于离子浸没和保留。CS-900在10和400 mV s -1时表现出369和226 F g -1的超高比电容分别在6 mol L -1 KOH电解质中。另外,将对称柔性全固态超级电容器装置与CS-900的电极和PVA / KOH凝胶电解质组装在一起。该器件在2000次拉伸-弯曲循环后可提供96%的容量,并能运行具有出色机械稳定性和循环稳定性的微电子器件。本工作探讨了MOF前体的尺寸效应与多孔碳结构之间的关系,以优化超级电容器的性能。
更新日期:2018-07-17
down
wechat
bug