当前位置: X-MOL 学术Particuology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved oxidation of hydrogen off-gas by hydrophobic surface modification: A multiscale density functional theory study
Particuology ( IF 4.1 ) Pub Date : 2018-07-14 , DOI: 10.1016/j.partic.2018.04.002
Cheng Lian , Cheng Cai , Xiangjian Shen , Shuangliang Zhao , Xinhai Yu , Honglai Liu

A catalytic micro-reactor for converting hydrogen off-gas into water was recently developed, through which the conversion efficiency of hydrogen gas was greatly improved by hydrophobic modification of the catalytic substrate. Herein, a hybrid theoretical method is reported that combines density functional theory (DFT) on both the quantum and molecular scales. This method allows the microscopic study of the mechanism by which the surface catalytic reaction can be manipulated. Specifically, quantum DFT calculations are performed to quantify the molecular interaction between the catalytic substrate and reagent or product. Classical DFT investigations are subsequently carried out to determine the local concentrations of reagents near catalytic sites subject to different surface coating conditions. Finally, the reaction efficiency is determined from the local concentrations based on collision theory. This multiscale method provides molecular insight for quantifying the effect of catalytic surface modification on the reaction efficiency. The method reveals that an optimal surface hydrophobic modification can promote the densities of reagents near the substrate, while depleting the produced water. These two factors promote the conversion efficiency. The exclusion of produced water from the catalytic substrate is affected more by the degree of polymer grafting than by the chain length of hydrophobic polymer moieties.



中文翻译:

通过疏水表面改性改善氢气废气的氧化:多尺度密度泛函理论研究

最近开发了一种用于将氢气废气转化成水的催化微反应器,通过该催化剂微反应器,通过对催化底物进行疏水改性,大大提高了氢气的转化效率。在本文中,报道了一种混合理论方法,该方法在量子和分子尺度上都结合了密度泛函理论(DFT)。该方法允许微观研究表面催化反应可被操纵的机理。具体而言,执行量子DFT计算以量化催化底物与试剂或产物之间的分子相互作用。随后进行经典的DFT研究,以确定在受不同表面涂层条件影响的催化部位附近试剂的局部浓度。最后,反应效率是根据碰撞理论从局部浓度确定的。这种多尺度方法为量化催化表面改性对反应效率的影响提供了分子认识。该方法表明,最佳的表面疏水改性可以提高底物附近试剂的密度,同时减少产出水。这两个因素提高了转换效率。聚合物接枝的程度比疏水性聚合物部分的链长更多地影响了从催化底物中排除采出水。该方法表明,最佳的表面疏水改性可以提高底物附近试剂的密度,同时减少产出水。这两个因素提高了转换效率。聚合物接枝的程度比疏水性聚合物部分的链长更多地影响了从催化底物中排除采出水。该方法表明,最佳的表面疏水改性可以提高底物附近试剂的密度,同时减少产出水。这两个因素提高了转换效率。聚合物接枝的程度比疏水性聚合物部分的链长更多地影响了从催化底物中排除采出水。

更新日期:2018-07-14
down
wechat
bug