当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of absorption refrigeration cycles for efficient air-cooled solar cooling
Solar Energy ( IF 6.0 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.solener.2018.04.004
Z.Y. Xu , R.Z. Wang

Abstract Absorption chiller is a widely used technology owing to its capability to utilize low grade thermal energy including solar thermal energy and waste heat. Yet, most solar absorption cooling systems need cooling tower to dissipate heat rejection into ambient. The use of cooling tower increases both the initial investment and water consumption, which can be improved by air-cooled solar absorption cooling system. In this paper, to give the best absorption cycle options under different conditions, five absorption refrigeration cycles suitable for air-cooled solar cooling including three double lift absorption cycles and two semi-GAX (Generator-Absorber heat eXchange) absorption cycles were compared. Steady-state simulation is carried out. Efficiencies of these cycles were calculated with LiBr-water and water-ammonia working pairs in the scenario of air-cooled solar cooling. Heat source temperatures of 75–100 °C from non-concentrating solar collector and air temperatures of 20–40 °C were considered. Both air-conditioning condition with evaporation temperature of 5 °C and sub-zero condition with −10 °C were discussed. It is found that mass-coupled semi-GAX absorption cycle with ammonia-water is suitable for air-conditioning with higher heat source temperatures, mass-coupled double lift absorption cycle with water-LiBr is suitable for air-conditioning with lower heat source temperature and mass-coupled double lift absorption cycle with ammonia-water is suitable for sub-zero conditions.

中文翻译:

高效风冷太阳能冷却吸收式制冷循环的比较

摘要 吸收式冷水机组因其能够利用低品位热能(包括太阳能热能和废热)而被广泛应用。然而,大多数太阳能吸收冷却系统需要冷却塔来将热量散发到环境中。使用冷却塔既增加了初期投资,又增加了用水量,可通过风冷太阳能吸收冷却系统加以改善。在本文中,为了给出不同条件下的最佳吸收循环选择,比较了五种适用于风冷太阳能冷却的吸收式制冷循环,包括三个双升程吸收循环和两个半 GAX(发电机-吸收器热交换)吸收循环。进行稳态模拟。在风冷太阳能冷却的情况下,这些循环的效率是用溴化锂-水和水-氨工作对计算的。考虑了来自非聚光太阳能集热器的 75-100°C 的热源温度和 20-40°C 的空气温度。讨论了蒸发温度为5°C的空调条件和-10°C的零下条件。发现氨水质量耦合半GAX吸收循环适用于热源温度较高的空调,水-溴化锂质量耦合双升吸收循环适用于热源温度较低的空调氨水质量耦合双升吸收循环适用于亚零条件。考虑了来自非聚光太阳能集热器的 75-100°C 的热源温度和 20-40°C 的空气温度。讨论了蒸发温度为5°C的空调条件和-10°C的零下条件。发现氨水质量耦合半GAX吸收循环适用于热源温度较高的空调,水-溴化锂质量耦合双升吸收循环适用于热源温度较低的空调氨水质量耦合双升吸收循环适用于亚零条件。考虑了来自非聚光太阳能集热器的 75-100°C 的热源温度和 20-40°C 的空气温度。讨论了蒸发温度为5°C的空调条件和-10°C的零下条件。发现氨水质量耦合半GAX吸收循环适用于热源温度较高的空调,水-溴化锂质量耦合双升吸收循环适用于热源温度较低的空调氨水质量耦合双升吸收循环适用于亚零条件。
更新日期:2018-09-01
down
wechat
bug