当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Can Relaxor Ferroelectric Behavior Be Realized for Poly(vinylidene fluoride-co-chlorotrifluoroethylene) [P(VDF–CTFE)] Random Copolymers by Inclusion of CTFE Units in PVDF Crystals?
Macromolecules ( IF 5.5 ) Pub Date : 2018-07-13 00:00:00 , DOI: 10.1021/acs.macromol.8b01155
Yanfei Huang 1, 2 , Jia-Zhuang Xu 1 , Thibaut Soulestin 3 , Fabrice Domingues Dos Santos 3 , Ruipeng Li 4 , Masafumi Fukuto 4 , Jun Lei 1 , Gan-Ji Zhong 1 , Zhong-Ming Li 1 , Yue Li 1 , Lei Zhu 2
Affiliation  

Relaxor ferroelectric (RFE) polymers are attractive for various electrical applications such as electrostrictive actuation, electromechanical sensors, electric energy storage, and electrocaloric cooling because of their high dielectric constants and low hysteresis loss. Current state-of-the-art RFE polymers include poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF–TrFE)]-based random copolymers and terpolymers. However, the high costs due to a safety concern of TrFE make their near-term commercialization difficult. It is highly desirable to explore the opportunity of TrFE-free PVDF copolymers [e.g., P(VDF–CTFE); CTFE is chlorotrifluoroethylene] to achieve the RFE behavior by inclusion of CTFE in PVDF crystals (i.e., isomorphism). In this work, two strategies were employed to include CTFE in PVDF crystals. First, high-pressure crystallization was used to obtain extended-chain crystals via the pseudohexagonal paraelectric phase. Structural analyses indicated that CTFE units were largely excluded from the γ unit cells and ferroelectric domains of PVDF but located as kinks inside the extended-chain lamellae. As a result, no RFE behavior was observed because of large ferroelectric γ domains. The second strategy utilized mechanical stretching at low temperatures (−20 to 0 °C) to obtain oriented small β crystallites (ca. 5–7 nm). Structural analyses indicated that CTFE units were excluded from the β unit cells, locating at the crystal–amorphous interfaces. Although the hysteresis loops became somewhat slimmer as a result of small crystallite sizes, the RFE behavior with slim hysteresis loops was still not achieved. This study demonstrated that CTFE units were too large to be included in the tightly packed PVDF unit cells, whether the α, γ, or β phase. In the future, it is desirable to explore other PVDF copolymers with a smaller comonomer such as 1-chloro-1-fluoroethylene.

中文翻译:

通过在PVDF晶体中包含CTFE单元,可以实现聚偏二氟乙烯-co-氯三氟乙烯[P(VDF–CTFE)]无规共聚物的弛豫铁电行为吗?

弛豫铁电(RFE)聚合物因其高介电常数和低磁滞损耗而吸引了各种电子应用,例如电致伸缩致动,机电传感器,电能存储和电热冷却。状态的最先进的电流RFE聚合物包括聚(偏二氟-三氟乙烯)[P(VDF-TrFE)]基无规共聚物和三元共聚物。但是,由于TrFE的安全性考虑,高昂的成本使其难以在短期内商业化。探索不含TrFE的PVDF共聚物[例如,P(VDF-CTFE);CTFE是三氟氯乙烯],可通过将CTFE包含在PVDF晶体中来实现RFE行为(即同构)。在这项工作中,采用了两种策略将CTFE包括在PVDF晶体中。首先,通过伪六方顺电相,使用高压结晶获得延伸链晶体。结构分析表明,CTFE单元在很大程度上被排除在PVDF的γ晶胞和铁电结构域之外,但位于延伸链片内部的纽结。因此,由于存在较大的铁电γ域,因此未观察到RFE行为。第二种策略是在低温(-20至0°C)下进行机械拉伸以获得取向的小β微晶(约5–7 nm)。结构分析表明,CTFE单元被排除在β晶胞之外,位于晶体-非晶界面上。尽管由于微晶尺寸小,磁滞回线变得更细一些,但仍无法实现具有纤细磁滞回线的RFE行为。这项研究表明,CTFE单元太大,无法包含在紧密堆积的PVDF晶胞中,无论是α,γ还是β相。将来,希望探索具有较小共聚单体的其他PVDF共聚物,例如1-氯-1-氟乙烯。第二种策略是在低温(-20至0°C)下进行机械拉伸以获得取向的小β微晶(约5–7 nm)。结构分析表明,CTFE单元被排除在β晶胞之外,位于晶体-非晶界面上。尽管由于微晶尺寸小,磁滞回线变得更细一些,但仍无法实现具有纤细磁滞回线的RFE行为。这项研究表明,CTFE单元太大,无法包含在紧密堆积的PVDF晶胞中,无论是α,γ还是β相。将来,希望探索具有较小共聚单体的其他PVDF共聚物,例如1-氯-1-氟乙烯。第二种策略是在低温(-20至0°C)下进行机械拉伸以获得取向的小β微晶(约5–7 nm)。结构分析表明,CTFE单元被排除在β晶胞之外,位于晶体-非晶界面上。尽管由于微晶尺寸小,磁滞回线变得更细一些,但仍无法实现具有纤细磁滞回线的RFE行为。这项研究表明,CTFE单元太大,无法包含在紧密堆积的PVDF晶胞中,无论是α,γ还是β相。将来,希望探索具有较小共聚单体的其他PVDF共聚物,例如1-氯-1-氟乙烯。位于晶体-非晶界面上。尽管由于微晶尺寸小,磁滞回线变得更细一些,但仍无法实现具有纤细磁滞回线的RFE行为。这项研究表明,CTFE单元太大,无法包含在紧密堆积的PVDF晶胞中,无论是α,γ还是β相。将来,希望探索具有较小共聚单体的其他PVDF共聚物,例如1-氯-1-氟乙烯。位于晶体-非晶界面上。尽管由于微晶尺寸小,磁滞回线变得更细一些,但仍无法实现具有纤细磁滞回线的RFE行为。这项研究表明,CTFE单元太大,无法包含在紧密堆积的PVDF晶胞中,无论是α,γ还是β相。将来,希望探索具有较小共聚单体的其他PVDF共聚物,例如1-氯-1-氟乙烯。
更新日期:2018-07-13
down
wechat
bug