当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crystalline Cyclophane-Protein Cage Frameworks.
ACS Nano ( IF 15.8 ) Pub Date : 2018-07-20 , DOI: 10.1021/acsnano.8b02856
Ngong Kodiah Beyeh 1, 2, 3 , Nonappa 1 , Ville Liljeström 1 , Joona Mikkilä 4 , Antti Korpi 4 , Davide Bochicchio 5 , Giovanni M Pavan 5 , Olli Ikkala 1 , Robin H A Ras 1, 4 , Mauri A Kostiainen 1, 4
Affiliation  

Cyclophanes are macrocyclic supramolecular hosts famous for their ability to bind atomic or molecular guests via noncovalent interactions within their well-defined cavities. In a similar way, porous crystalline networks, such as metal-organic frameworks, can create microenvironments that enable controlled guest binding in the solid state. Both types of materials often consist of synthetic components, and they have been developed within separate research fields. Moreover, the use of biomolecules as their structural units has remained elusive. Here, we have synthesized a library of organic cyclophanes and studied their electrostatic self-assembly with biological metal-binding protein cages (ferritins) into ordered structures. We show that cationic pillar[5]arenes and ferritin cages form biohybrid cocrystals with an open protein network structure. Our cyclophane-protein cage frameworks bridge the gap between molecular frameworks and colloidal nanoparticle crystals and combine the versatility of synthetic supramolecular hosts with the highly selective recognition properties of biomolecules. Such host-guest materials are interesting for porous material applications, including water remediation and heterogeneous catalysis.

中文翻译:

结晶环蛋白骨架框架。

环烷是大环超分子宿主,以其在明确定义的腔内通过非共价相互作用与原子或分子客体结合的能力而闻名。以类似的方式,多孔晶体网络(例如金属-有机骨架)可以创建微环境,使固态下的客体结合成为可能。两种材料通常都由合成成分组成,并且它们是在单独的研究领域中开发的。此外,使用生物分子作为其结构单元仍然难以捉摸。在这里,我们已经合成了有机环烷烃的文库,并研究了它们与生物金属结合蛋白笼子(铁蛋白)的静电自组装成有序结构。我们显示阳离子柱[5]芳烃和铁蛋白笼形成具有开放的蛋白质网络结构的生物杂交共晶体。我们的环蛋白-蛋白质笼框架架桥了分子框架与胶体纳米颗粒晶体之间的鸿沟,并将合成的超分子宿主的多功能性与生物分子的高度选择性识别特性结合在一起。这种主客体材料对于多孔材料应用是令人感兴趣的,包括水修复和非均相催化。
更新日期:2018-07-13
down
wechat
bug