当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core–sheath structured MnO2 nanoribbons and cotton-derived carbon cloth
Electrochimica Acta ( IF 5.5 ) Pub Date : 2018-07-11 , DOI: 10.1016/j.electacta.2018.07.036
Caichao Wan , Yue Jiao , Daxin Liang , Yiqiang Wu , Jian Li

An increasing emphasis on green chemistry and high-efficient utilization of natural resources has raised more demands for more facile, rapid and cost-effective approaches for preparation of energy-storage equipment. Herein, we demonstrate a simple, fast and cheap approach to create a core–sheath structured textile electrode based on cotton-derived carbon cloth (CDCC, core) and MnO2 nanoribbons (sheath). A good interface bonding between the in-situ grown MnO2 and carbon fibers of CDCC aided electron transfer. The abundant MnO2 nanostructures increased electrochemically active areas accessed by electrolyte ions and the porous CDCC acted as an electrolyte reservoir to shorten ion-diffusion path and facilitate efficient infiltration of electrolyte ions. Because of these advantages, the MnO2/CDCC electrode exhibits a high areal specific capacitance of 202 mF cm−2. In addition, the flexible electrode was assembled into an all-textile and spirally wound asymmetric supercapacitor with an outstanding electrochemical activity, like a high areal energy density of 30.1 μW h cm−2 at 0.15 mW cm−2 and an excellent capacitance retention of 87.7% after 5000 cycles. Another meritorious contribution is the synthetic strategy realizing a more direct, eco-friendly and efficient utilization way of cellulose resource, which avoided pollutions from cellulose purification or pretreatment.



中文翻译:

基于芯鞘结构的MnO 2纳米带和棉质碳布的高性能,全纺织和螺旋缠绕不对称超级电容器

对绿色化学和对自然资源的高效利用的日益重视,引起了人们对更简便,快速和具有成本效益的储能设备制备方法的需求。本文中,我们演示了一种简单,快速且廉价的方法,以基于棉花的碳布(CDCC,芯)和MnO 2纳米带(鞘)为基础,创建芯-鞘结构的纺织电极。原位生长的MnO 2和CDCC的碳纤维之间的良好界面结合有助于电子转移。丰富的MnO 2纳米结构增加了通过电解质离子进入的电化学活性区域,而多孔CDCC充当了电解质储存器,以缩短离子扩散路径并促进电解质离子的有效渗透。由于这些优点,MnO 2 / CDCC电极表现出202 mF cm -2的高面积比电容。另外,将柔性电极组装成具有出色的电化学活性的全纺织和螺旋卷绕的不对称超级电容器,例如在0.15 mW cm -2的30.1μWh cm -2的高面能量密度5000次循环后的出色电容保持率为87.7%。另一个有功的贡献是合成策略,实现了一种更直接,生态友好和有效利用纤维素资源的方式,避免了纤维素纯化或预处理造成的污染。

更新日期:2018-07-11
down
wechat
bug