当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Versatile cyclodextrin nanotube synthesis with functional anchors for efficient ion channel formation: design, characterization and ion conductance†
Nanoscale ( IF 5.8 ) Pub Date : 2018-07-11 00:00:00 , DOI: 10.1039/c8nr02623h
Hajar Mamad-Hemouch 1, 2, 3, 4, 5 , Laurent Bacri 1, 2, 3, 4, 5 , Cécile Huin 1, 2, 3, 4, 5 , Cédric Przybylski 6, 7, 8, 9, 10 , Bénédicte Thiébot 1, 10, 11, 12, 13 , Gilles Patriarche 3, 5, 14, 15, 16 , Nathalie Jarroux 1, 2, 3, 4, 5 , Juan Pelta 1, 2, 3, 4, 5
Affiliation  

Biomimetic ion channels with different materials have been extensively designed to study the dynamics in a confined medium. These channels allow the development of several applications, such as ultra-fast sequencing and biomarker detection. When considering their synthesis, the use of cheap, non-cytotoxic and readily available materials is an increasing priority. Cyclodextrins, in supramolecular architectures, are widely utilized for pharmaceutical and biotechnological applications. Recent work has shown that short nanotubes (NTs) based on alpha-cyclodextrin (α-CD) assemble transient ion channels into membranes without cytotoxicity. In this study, we probe the influence of new cyclodextrin NT structural parameters and chemical modifications on channel formation, stability and electrical conductance. We report the successful synthesis of β- and γ-cyclodextrin nanotubes (β-CDNTs and γ-CDNTs), as evidenced by mass-spectrometry and high-resolution transmission electron microscopy. CDNTs were characterized by their length, diameter and number of CDs. Two hydrophobic groups, silylated or vinylated, were attached along the γ-CDNTs, improving the insertion time into the membrane. All NTs synthesized form spontaneous biomimetic ion channels. The hydrophobic NTs exhibit higher stability in membranes. Electrophysiological measurements show that ion transport is the main contribution of NT conductance and that the ion energy penalty for the entry into these NTs is similar to that of biological channels.

中文翻译:

具有功能性锚的多功能环糊精纳米管合成,可有效形成离子通道:设计,表征和离子电导

已对具有不同材料的仿生离子通道进行了广泛设计,以研究受限介质中的动力学。这些通道允许开发多种应用程序,例如超快速测序和生物标志物检测。考虑到它们的合成,廉价,无细胞毒性和易于获得的材料的使用日益受到重视。超分子结构中的环糊精被广泛用于制药和生物技术应用。最近的工作表明,基于α-环糊精(α-CD)的短纳米管(NTs)将瞬态离子通道组装到膜中而没有细胞毒性。在这项研究中,我们探讨了新的环糊精NT结构参数和化学修饰对通道形成,稳定性和电导率的影响。我们报道了β-和γ-环糊精纳米管(β-CDNTs和γ-CDNTs)的成功合成,这已通过质谱和高分辨率透射电子显微镜得到了证明。CDNTs通过其长度,直径和CD数量来表征。两个疏水基团(甲硅烷基化或乙烯基化)沿着γ-CDNTs连接,从而缩短了插入膜的时间。合成的所有NT均形成自发的仿生离子通道。疏水性NT在膜中表现出更高的稳定性。电生理学测量表明,离子迁移是NT电导的主要贡献,并且进入这些NT中的离子能量损失与生物通道相似。CDNTs通过其长度,直径和CD数量来表征。两个疏水基团(甲硅烷基化或乙烯基化)沿着γ-CDNTs连接,从而缩短了插入膜的时间。合成的所有NT均形成自发的仿生离子通道。疏水性NT在膜中表现出更高的稳定性。电生理学测量表明,离子迁移是NT电导的主要贡献,并且进入这些NT中的离子能量损失与生物通道相似。CDNTs通过其长度,直径和CD数量来表征。两个疏水基团(甲硅烷基化或乙烯基化)沿着γ-CDNTs连接,从而缩短了插入膜的时间。合成的所有NT均形成自发的仿生离子通道。疏水性NT在膜中表现出更高的稳定性。电生理学测量表明,离子迁移是NT电导的主要贡献,并且进入这些NT中的离子能量损失与生物通道相似。
更新日期:2018-07-11
down
wechat
bug