当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Detecting Ultrasound Vibrations with Graphene Resonators
Nano Letters ( IF 9.6 ) Pub Date : 2018-07-10 00:00:00 , DOI: 10.1021/acs.nanolett.8b02036
Gerard J. Verbiest 1 , Jan N. Kirchhof 1, 2 , Jens Sonntag 1, 3 , Matthias Goldsche 1, 3 , Tymofiy Khodkov 1, 3 , Christoph Stampfer 1, 3
Affiliation  

Ultrasound detection is one of the most-important nondestructive subsurface characterization tools for materials, the goal of which is to laterally resolve the subsurface structure with nanometer or even atomic resolution. In recent years, graphene resonators have attracted attention for their use in loudspeakers and ultrasound radios, showing their potential for realizing communication systems with air-carried ultrasound. Here, we show a graphene resonator that detects ultrasound vibrations propagating through the substrate on which it was fabricated. We ultimately achieve a resolution of ∼7 pm/ in ultrasound amplitude at frequencies up to 100 MHz. Thanks to an extremely high nonlinearity in the mechanical restoring force, the resonance frequency itself can also be used for ultrasound detection. We observe a shift of 120 kHz at a resonance frequency of 65 MHz for an induced vibration amplitude of 100 pm with a resolution of 25 pm. Remarkably, the nonlinearity also explains the generally observed asymmetry in the resonance frequency tuning of the resonator when it is pulled upon with an electrostatic gate. This work puts forward a sensor design that fits onto an atomic force microscope cantilever and therefore promises direct ultrasound detection at the nanoscale for nondestructive subsurface characterization.

中文翻译:

使用石墨烯谐振器检测超声振动

超声波检测是最重要的材料非破坏性地下特征分析工具之一,其目标是以纳米或什至原子分辨率横向解析地下结构。近年来,石墨烯谐振器因其在扬声器和超声波收音机中的使用而引起了人们的关注,显示出它们在实现航空超声通信系统中的潜力。在这里,我们展示了一个石墨烯谐振器,该谐振器可以检测传播通过其制造基板的超声波振动。我们最终实现了〜7 pm /的分辨率在高达100 MHz的频率下的超声振幅。由于机械恢复力具有极高的非线性,因此共振频率本身也可以用于超声波检测。我们观察到在65 MHz的共振频率下,对于100 pm的感应振幅为25 pm的振动,发生了120 kHz的偏移。明显地,非线性还解释了当谐振器被静电门拉动时谐振器的谐振频率调谐中通常观察到的不对称性。这项工作提出了一种适合原子力显微镜悬臂的传感器设计,因此有望在纳米级进行直接超声检测,以进行无损表面下表征。
更新日期:2018-07-10
down
wechat
bug