当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species
AIChE Journal ( IF 3.7 ) Pub Date : 2018-08-14 , DOI: 10.1002/aic.16354
Jonathan M. Conway 1 , James R. Crosby 1 , Andrew P. Hren 1 , Robert T. Southerland 1 , Laura L. Lee 1 , Vladimir V. Lunin 2 , Petri Alahuhta 2 , Michael E. Himmel 2 , Yannick J. Bomble 2 , Michael W. W. Adams 3 , Robert M. Kelly 1
Affiliation  

Biological hydrolysis of microcrystalline cellulose is an uncommon feature in the microbial world, especially among bacteria and archaea growing optimally above 70°C (the so‐called extreme thermophiles). In fact, among this group only certain species in the genus Caldicellulosiruptor are capable of rapid and extensive cellulose degradation. Four novel multidomain glycoside hydrolases (GHs) from Caldicellulosiruptor morganii and Caldicellulosiruptor danielii were produced recombinantly in Caldicellulosiruptor bescii and characterized. These GHs are structurally organized with two or three catalytic domains flanking carbohydrate binding modules from Family 3. Collectively, these enzymes represent GH families 5, 9, 10, 12, 44, 48, and 74, and hydrolyze crystalline cellulose, glucan, xylan, and mannan, the primary carbohydrates in plant biomass. Degradation of microcrystalline cellulose by cocktails of GHs from three Caldicellulosiruptor species demonstrated that synergistic interactions enable mixtures of multiple enzymes to outperform single enzymes, suggesting a community mode of action for lignocellulose utilization in thermal environments. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4218–4228, 2018

中文翻译:

高度木质素纤维素分解Caldicellulosiruptor物种的新型多域,多功能糖苷水解酶

微晶纤维素的生物水解是微生物世界中不常见的特征,尤其是在70°C以上最佳生长的细菌和古细菌中(所谓的极端嗜热菌)。实际上,在这一组中,仅Caldicellulosiruptor属中的某些物种能够迅速和广泛地降解纤维素。四种新型多畴糖苷从水解酶(GH)Caldicellulosiruptor氏摩根Caldicellulosiruptor danielii是在重组产生Caldicellulosiruptor bescii和特点。这些GH在结构上组织有两个或三个催化域,侧接家族3的碳水化合物结合模块。这些酶共同代表GH家族5、9、10、12、44、48和74,并水解结晶纤维素,葡聚糖,木聚糖,甘露聚糖是植物生物量中的主要碳水化合物。来自三种Caldicellulosiruptor物种的GH混合物对微晶纤维素的降解表明,协同相互作用使多种酶的混合物胜过单个酶,这表明在热环境中木质纤维素利用的社区作用方式。©2018美国化学工程师学会AIChE J,64:4218–4228,2018
更新日期:2018-08-14
down
wechat
bug