当前位置: X-MOL 学术Faraday Discuss. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computing of temporal information in spiking neural networks with ReRAM synapses.
Faraday Discussions ( IF 3.3 ) Pub Date : 2019-02-18 , DOI: 10.1039/c8fd00097b
W Wang 1 , G Pedretti , V Milo , R Carboni , A Calderoni , N Ramaswamy , A S Spinelli , D Ielmini
Affiliation  

Resistive switching random-access memory (ReRAM) is a two-terminal device based on ion migration to induce resistance switching between a high resistance state (HRS) and a low resistance state (LRS). ReRAM is considered one of the most promising technologies for artificial synapses in brain-inspired neuromorphic computing systems. However, there is still a lack of general understanding about how to develop such a gestalt system to imitate and compete with the brain's functionality and efficiency. Spiking neural networks (SNNs) are well suited to describe the complex spatiotemporal processing inside the brain, where the energy efficiency of computation mostly relies on the spike carrying information about both space (which neuron fires) and time (when a neuron fires). This work addresses the methodology and implementation of a neuromorphic SNN system to compute the temporal information among neural spikes using ReRAM synapses capable of spike-timing dependent plasticity (STDP). The learning and recognition of spatiotemporal spike sequences are experimentally demonstrated. Our simulation study shows that it is possible to construct a multi-layer spatiotemporal computing network. Spatiotemporal computing also enables learning and detection of the trace of moving objects and mimicking of the hierarchy structure of the biological visual cortex adopting temporal-coding for fast recognition.

中文翻译:


使用 ReRAM 突触计算尖峰神经网络中的时间信息。



电阻切换随机存取存储器(ReRAM)是一种基于离子迁移的两端器件,可诱导高电阻状态(HRS)和低电阻状态(LRS)之间的电阻切换。 ReRAM 被认为是类脑神经形态计算系统中人工突触最有前途的技术之一。然而,对于如何开发这样的格式塔系统来模仿和竞争大脑的功能和效率,仍然缺乏普遍的理解。尖峰神经网络 (SNN) 非常适合描述大脑内部复杂的时空处理,其中计算的能量效率主要依赖于尖峰携带有关空间(神经元放电)和时间(神经元何时放电)的信息。这项工作解决了神经形态 SNN 系统的方法和实现,该系统使用具有尖峰时间依赖性可塑性 (STDP) 的 ReRAM 突触来计算神经尖峰之间的时间信息。通过实验证明了时空尖峰序列的学习和识别。我们的模拟研究表明构建多层时空计算网络是可能的。时空计算还可以学习和检测移动物体的踪迹,并模仿生物视觉皮层的层次结构,采用时间编码进行快速识别。
更新日期:2019-02-19
down
wechat
bug