当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hidden by graphene – Towards effective screening of interface van der Waals interactions via monolayer coating
Carbon ( IF 10.5 ) Pub Date : 2018-11-01 , DOI: 10.1016/j.carbon.2018.07.011
Alberto Ambrosetti , Pier Luigi Silvestrelli

Recent atomic force microscopy (AFM) experiments~[ACS Nano {\bf 2014}, 8, 12410-12417] conducted on graphene-coated SiO$_2$ demonstrated that monolayer graphene (G) can effectively screen dispersion van der Waals (vdW) interactions deriving from the underlying substrate: despite the single-atom thickness of G, the AFM tip was almost insensitive to SiO$_2$, and the tip-substrate attraction was essentially determined only by G. This G vdW {\it opacity} has far reaching implications, encompassing stabilization of multilayer heterostructures, micromechanical phenomena or even heterogeneous catalysis. Yet, detailed experimental control and high-end applications of this phenomenon await sound physical understanding of the underlying physical mechanism. By quantum many-body analysis and ab-initio Density Functional Theory, here we address this challenge providing theoretical rationalization of the observed G vdW {\it opacity} for weakly interacting substrates. The non-local density response and ultra slow decay of the G vdW interaction ensure compensation between standard attractive terms and many-body repulsive contributions, enabling vdW {\it opacity} over a broad range of adsorption distances. vdW {\it opacity} appears most efficient in the low frequency limit and extends beyond London dispersion including electrostatic Debye forces. By virtue of combined theoretical/experimental validation, G hence emerges as a promising ultrathin {\it shield} for modulation and switching of vdW interactions at interfaces and complex nanoscale devices.

中文翻译:

被石墨烯隐藏——通过单层涂层有效筛选界面范德华相互作用

最近的原子力显微镜 (AFM) 实验~[ACS Nano {\bf 2014}, 8, 12410-12417] 在石墨烯包覆的 SiO$_2$ 上进行的证明单层石墨烯 (G) 可以有效地筛选分散范德华 (vdW)来自底层衬底的相互作用:尽管 G 的单原子厚度,AFM 尖端几乎对 SiO$_2$ 不敏感,并且尖端-衬底吸引力基本上仅由 G 决定。这个 G vdW {\it opacity} 有深远的影响,包括多层异质结构的稳定性、微机械现象甚至多相催化。然而,这种现象的详细实验控制和高端应用需要对潜在物理机制的合理物理理解。通过量子多体分析和 ab-initio 密度泛函理论,在这里,我们解决了这一挑战,为弱相互作用底物提供了观察到的 G vdW {\it opacity} 的理论合理化。G vdW 相互作用的非局部密度响应和超慢衰减确保了标准吸引力项和多体排斥贡献之间的补偿,使 vdW {\it opacity} 在广泛的吸附距离范围内成为可能。vdW {\it opacity} 似乎在低频限制中最有效,并且延伸到伦敦色散之外,包括静电德拜力。凭借理论/实验相结合的验证,G 因此成为一种有前途的超薄 {\it shield},用于在界面和复杂纳米级设备上调节和切换 vdW 相互作用。G vdW 相互作用的非局部密度响应和超慢衰减确保了标准吸引力项和多体排斥贡献之间的补偿,使 vdW {\it opacity} 在广泛的吸附距离范围内成为可能。vdW {\it opacity} 似乎在低频限制中最有效,并且延伸到伦敦色散之外,包括静电德拜力。凭借理论/实验相结合的验证,G 因此成为一种有前途的超薄 {\it shield},用于在界面和复杂纳米级设备上调节和切换 vdW 相互作用。G vdW 相互作用的非局部密度响应和超慢衰减确保了标准吸引力项和多体排斥贡献之间的补偿,使 vdW {\it opacity} 在广泛的吸附距离范围内成为可能。vdW {\it opacity} 似乎在低频限制中最有效,并且延伸到伦敦色散之外,包括静电德拜力。凭借理论/实验相结合的验证,G 因此成为一种有前途的超薄 {\it shield},用于在界面和复杂纳米级设备上调节和切换 vdW 相互作用。vdW {\it opacity} 似乎在低频限制中最有效,并且延伸到伦敦色散之外,包括静电德拜力。凭借理论/实验相结合的验证,G 因此成为一种有前途的超薄 {\it shield},用于在界面和复杂纳米级设备上调节和切换 vdW 相互作用。vdW {\it opacity} 似乎在低频限制中最有效,并且延伸到伦敦色散之外,包括静电德拜力。凭借理论/实验相结合的验证,G 因此成为一种有前途的超薄 {\it shield},用于在界面和复杂纳米级设备上调节和切换 vdW 相互作用。
更新日期:2018-11-01
down
wechat
bug