当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries
Nano Energy ( IF 17.6 ) Pub Date : 2018-07-09 , DOI: 10.1016/j.nanoen.2018.07.013
Gianluca Longoni , Jaya Kumar Panda , Luca Gagliani , Rosaria Brescia , Liberato Manna , Francesco Bonaccorso , Vittorio Pellegrini

We have realized a Lithium Iron Phosphate (LFP)-graphene nanohybrid obtained by a direct LFP crystal colloidal synthesis on few-layer graphene (FLG) flakes produced by the liquid phase exfoliation (LPE) of pristine graphite. This hybrid material has been tested as a cathode in Li-ion batteries, achieving fast charge/discharge responses to high specific currents. We demonstrate a specific capacity exceeding 110 mAh g−1 at 20 C, with no electrode damaging. Our LFP-FLG electrodes display a low charge transfer resistance, chemical stability and steady electrochemical behavior even under stressful conditions, such as impulsive charges at a high-rate (5 C) and long cycles at 1 C (> 700 cycles). The LFP colloidal synthesis combined with the FLG production by LPE allows for tuning both the LFP-platelets like and FLG flake morphologies in order to promote an optimal connection between the LFP and FLG flakes, ensuring fast charge transfers and consequently high-rate electrochemical performances. The method here proposed yields a scalable production path, which can be easily extended to silicate-, phosphate- and fluorophosphates-based cathode materials for the next generation of high-power lithium batteries.



中文翻译:

在几层石墨烯薄片上生长的原位LiFePO 4纳米颗粒作为锂离子电池的高功率阴极纳米杂化物

我们已经实现了通过在原始石墨的液相剥离(LPE)产生的几层石墨烯(FLG)薄片上直接进行LFP晶体胶体合成而获得的磷酸铁锂(LFP)-石墨烯纳米杂化体。该混合材料已经过测试,可作为锂离子电池的阴极,实现对高比电流的快速充电/放电响应。我们证明了超过110 mAh g -1的比容量在20 C的温度下,不会损坏电极。我们的LFP-FLG电极即使在压力条件下也表现出低的电荷转移电阻,化学稳定性和稳定的电化学行为,例如高速率(5 C)的脉冲电荷和1 C(> 700循环)的长循环。LFP胶体合成与LPE生产的FLG相结合,可调节LFP薄片状和FLG薄片形态,以促进LFP和FLG薄片之间的最佳连接,从而确保快速的电荷转移并因此获得高速率的电化学性能。本文提出的方法产生了可扩展的生产路径,可以轻松地扩展到下一代大功率锂电池的硅酸盐,磷酸盐和氟磷酸盐基正极材料。

更新日期:2018-07-09
down
wechat
bug