当前位置: X-MOL 学术Bioconjugate Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing Microreactors Resembling Cellular Microenvironment via Polyamine-Mediated Nanoparticle-Assembly for Tuning Glucose Oxidase Kinetics
Bioconjugate Chemistry ( IF 4.0 ) Pub Date : 2018-07-06 00:00:00 , DOI: 10.1021/acs.bioconjchem.8b00303
Gousia Begum 1 , Shikha Lalwani 1 , Rohit Kumar Rana 1
Affiliation  

Spatial confinement of glucose oxidase (GOx) in the hollow interior of a bioinspired matrix via polyamine mediated silica nanoparticle assembly under environmentally benign conditions is demonstrated herein. In a similarity to the biosilicification processes in diatoms, we use poly(allylamine hydrochloride) (PAH) to direct the assembly of silica nanoparticles on CaCO3 spheres as the removable core. When this assembly process is performed on the CaCO3 spheres, which are preloaded with GOx in a postsynthesis method, microspheres encapsulating GOx are formed. Interestingly, the encapsulated GOx in these microreactors exhibits activity with a Michaelis–Menten constant (KM) that is 2- to 3-fold less compared with the free enzyme in the solution. While the microenvironment of the organic (PAH)–inorganic (silica) hybrid system can be advantageous for the substrate to interact with enzyme, the effective pH in the vicinity of the entrapped enzyme may also be accountable for the improved activity, resulting in the lower apparent KM and enhanced specificity constant (kcat/KM). A 2-fold higher thermal stability of the encapsulated GOx compared with free GOx in solution further demonstrates the efficacy of the integrated architecture. Additionally, the PAH by virtue of its buffering capability allows the microspheres in imparting pH stability to the encapsulated GOx. Therefore, the method is not only a greener process for performing enzyme immobilization but also anticipated to aid in designing microreactors for enhanced enzyme activity.

中文翻译:

通过多胺介导的纳米粒子组装设计类似细胞微环境的微反应器,以调节葡萄糖氧化酶的动力学。

本文证明了在环境良性条件下经由聚胺介导的二氧化硅纳米颗粒组装体在生物启发的基质的中空内部中葡萄糖氧化酶(GOx)的空间限制。与硅藻中的生物硅化过程相似,我们使用聚(烯丙胺盐酸盐)(PAH)指导二氧化硅纳米颗粒在CaCO 3球上作为可移动核的组装。当在后合成方法中对预装有GOx的CaCO 3球进行组装过程时,会形成封装GOx的微球。有趣的是,这些微反应器中封装的GOx表现出具有Michaelis–Menten常数(K M),比溶液中的游离酶少2至3倍。虽然有机(PAH)-无机(二氧化硅)杂化系统的微环境可能有利于底物与酶相互作用,但被包埋的酶附近的有效pH值也可能是活性提高的原因,导致较低的活性。表观K M和增强的特异性常数(k cat / K M)。与溶液中的游离GOx相比,封装的GOx的热稳定性高2倍,进一步证明了集成体系结构的功效。此外,PAH凭借其缓冲能力允许微球为封装的GOx赋予pH稳定性。因此,该方法不仅是用于进行酶固定的绿色工艺,而且有望帮助设计用于增强酶活性的微反应器。
更新日期:2018-07-06
down
wechat
bug