当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Caging Na3V2(PO4)2F3 Microcubes in Cross‐Linked Graphene Enabling Ultrafast Sodium Storage and Long‐Term Cycling
Advanced Science ( IF 14.3 ) Pub Date : 2018-07-07 , DOI: 10.1002/advs.201800680
Yangsheng Cai 1 , Xinxin Cao 1 , Zhigao Luo 1 , Guozhao Fang 1 , Fei Liu 1 , Jiang Zhou 1, 2 , Anqiang Pan 1, 2 , Shuquan Liang 1, 2
Affiliation  

Sodium‐ion batteries are widely regarded as a promising supplement for lithium‐ion battery technology. However, it still suffers from some challenges, including low energy/power density and unsatisfactory cycling stability. Here, a cross‐linked graphene‐caged Na3V2(PO4)2F3 microcubes (NVPF@rGO) composite via a one‐pot hydrothermal strategy followed by freeze drying and heat treatment is reported. As a cathode for a sodium‐ion half‐cell, the NVPF@rGO delivers excellent cycling stability and rate capability, as well as good low temperature adaptability. The structural evolution during the repeated Na+ extraction/insertion and Na ions diffusion kinetics in the NVPF@rGO electrode are investigated. Importantly, a practicable sodium‐ion full‐cell is constructed using a NVPF@rGO cathode and a N‐doped carbon anode, which delivers outstanding cycling stability (95.1% capacity retention over 400 cycles at 10 C), as well as an exceptionally high energy density (291 Wh kg−1 at power density of 192 W kg−1). Such micro‐/nanoscale design and engineering strategies, as well as deeper understanding of the ion diffusion kinetics, may also be used to explore other micro‐/nanostructure materials to boost the performance of energy storage devices.

中文翻译:


将 Na3V2(PO4)2F3 微立方体封装在交联石墨烯中,实现超快钠存储和长期循环



钠离子电池被广泛认为是锂离子电池技术的有前途的补充。然而,它仍然面临一些挑战,包括能量/功率密度低和循环稳定性不理想。在此,报道了通过一锅水热策略然后冷冻干燥和热处理得到的交联石墨烯笼状Na 3 V 2 (PO 4 ) 2 F 3微立方体(NVPF@rGO)复合材料。作为钠离子半电池的阴极,NVPF@rGO 具有出色的循环稳定性和倍率性能以及良好的低温适应性。研究了 NVPF@rGO 电极中重复 Na +提取/插入过程中的结构演变以及 Na 离子扩散动力学。重要的是,实用的钠离子全电池是使用 NVPF@rGO 阴极和 N 掺杂碳阳极构建的,它具有出色的循环稳定性(10 C 下 400 次循环后的容量保持率为 95.1%),以及极高的容量保持率。能量密度(功率密度为192 W kg -1时为291 Wh kg -1 )。这种微/纳米尺度的设计和工程策略,以及对离子扩散动力学的更深入理解,也可用于探索其他微/纳米结构材料,以提高储能设备的性能。
更新日期:2018-07-07
down
wechat
bug