当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of turbulence radiation interactions of CH4H2/air turbulent flames at atmospheric and elevated pressures
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2018-07-04 , DOI: 10.1016/j.ijhydene.2018.06.060
Xiao Yang , Zhihong He , Shikui Dong , Heping Tan

Predicting thermal radiation for turbulent combustion highlights the significance of turbulence radiation interactions (TRI). Thermal radiation behaviors of methane/hydrogen flames under elevated pressures are investigated numerically using the developed TRI module integrated into CFD codes. The updated non-gray weighted sum of gray gases model is used to calculate the radiative properties of participating media. TRI effects have been analyzed with 0%–50% volumetric fraction of hydrogen in the methane/hydrogen blended fuels under 1–5 atm working pressures. Employing the radiation model considering TRI achieves closer predicted consistency to the experimental data. Only thermal radiation makes the flame temperature dropped about 60–140 K, while the predicted radiative source term calculated with TRI is higher than that without TRI, which results in a colder flame (approximately 13–60 K lower). The impact of TRI on the radiation behavior is enhanced in hydrogen-enriched high-pressure flame as the predicted radiation heat flux and radiative source term are increased above 25% than that without TRI. On account of TRI effect, the net radiative heat loss increases almost 50% at elevated pressure. The strong radiation of participating media in methane/hydrogen flames under elevated pressures emphasizes the importance of TRI effect on accurate predictions of thermal radiation and NO emission.



中文翻译:

大气压力和高压下CH 4 H 2 /空气湍流火焰的湍流辐射相互作用的预测

预测湍流燃烧的热辐射突显了湍流辐射相互作用(TRI)的重要性。使用集成到CFD代码中的已开发TRI模块,对甲烷/氢火焰在高压下的热辐射行为进行了数值研究。更新后的灰色气体的非灰色加权总和模型用于计算参与介质的辐射特性。在1-5个大气压的工作压力下,甲烷/氢混合燃料中氢的体积分数为0%–50%,分析了TRI的影响。使用考虑了TRI的辐射模型,可以获得与实验数据更接近的预测一致性。只有热辐射才能使火焰温度下降约60–140 K,而使用TRI计算的预测辐射源项要比不使用TRI的预测辐射源项高,这样会导致火焰变冷(大约低13–60 K)。由于预测的辐射热通量和辐射源项比不含TRI的辐射热通量和辐射源项增加了25%以上,因此TRI对辐射行为的影响在富氢高压火焰中得到了增强。由于TRI效应,在升高的压力下,净辐射热损失几乎增加了50%。在高压下甲烷/氢火焰中参与介质的强辐射强调了TRI效应对准确预测热辐射和NO排放的重要性。在升高的压力下,净辐射热损失将增加近50%。在高压下甲烷/氢火焰中参与介质的强辐射强调了TRI效应对准确预测热辐射和NO排放的重要性。在升高的压力下,净辐射热损失将增加近50%。在高压下甲烷/氢火焰中参与介质的强辐射强调了TRI效应对准确预测热辐射和NO排放的重要性。

更新日期:2018-07-04
down
wechat
bug