当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Screening of Metal-Organic Frameworks for Membrane-Based CO2/N2/H2O Separations: Best Materials for Flue Gas Separation.
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-07-03 , DOI: 10.1021/acs.jpcc.8b05416
Hilal Daglar 1 , Seda Keskin 1
Affiliation  

It has become a significant challenge to select the best metal-organic frameworks (MOFs) for membrane-based gas separations because the number of synthesized MOFs is growing exceptionally fast. In this work, we used high-throughput computational screening to identify the top MOF membranes for flue gas separation. Grand canonical Monte Carlo and molecular dynamics simulations were performed to assess adsorption and diffusion properties of CO2 and N2 in 3806 different MOFs. Using these data, selectivities and permeabilities of MOF membranes were predicted and compared with those of conventional membranes, polymers, and zeolites. The best performing MOF membranes offering CO2/N2 selectivity > 350 and CO2 permeability > 106 Barrer were identified. Ternary CO2/N2/H2O mixture simulations were then performed for the top MOFs to unlock their potential under industrial operating conditions, and results showed that the presence of water decreases CO2/N2 selectivity and CO2 permeability of some MOF membranes. As a result of this stepwise screening procedure, the number of promising MOF membranes to be investigated for flue gas separation in future experimental studies was narrowed down from thousands to tens. We finally examined the structure-performance relations of MOFs to understand which properties lead to the greatest promise for flue gas separation and concluded that lanthanide-based MOFs with narrow pore openings (<4.5 Å), low porosities (<0.75), and low surface areas (<1000 m2/g) are the best materials for membrane-based CO2/N2 separations.

中文翻译:

基于膜的CO2 / N2 / H2O分离的金属有机骨架的计算筛选:烟气分离的最佳材料。

选择最佳的金属有机骨架(MOF)进行基于膜的气体分离已成为一项重大挑战,因为合成的MOF的数量异常快速地增长。在这项工作中,我们使用了高通量计算筛选来确定用于烟气分离的顶级MOF膜。进行了大经典的蒙特卡洛和分子动力学模拟,以评估3806种不同MOF中CO2和N2的吸附和扩散特性。利用这些数据,可以预测MOF膜的选择性和渗透性,并将其与常规膜,聚合物和沸石的选择性和渗透性进行比较。确定了性能最佳的MOF膜,其CO2 / N2选择性> 350,CO2渗透性> 106 Barrer。然后对顶级MOF进行三元CO2 / N2 / H2O混合物模拟,以释放其在工业运行条件下的潜力,结果表明,水的存在会降低某些MOF膜的CO2 / N2选择性和CO2渗透性。这种逐步筛选程序的结果是,在未来的实验研究中要进行烟气分离研究的有前景的MOF膜的数量从数千减少到数十。最后,我们检查了MOF的结构与性能的关系,以了解哪些特性可带来最大的烟气分离前景,并得出结论,基于镧系元素的MOF具有狭窄的开孔(<4.5Å),低孔隙率(<0.75)和低表面面积(<1000平方米/克)是基于膜的CO2 / N2分离的最佳材料。结果表明,水的存在会降低某些MOF膜的CO2 / N2选择性和CO2渗透性。这种逐步筛选程序的结果是,在未来的实验研究中要进行烟气分离研究的有前景的MOF膜的数量从数千减少到数十。最后,我们检查了MOF的结构与性能的关系,以了解哪些特性可带来最大的烟气分离前景,并得出结论,基于镧系元素的MOF具有狭窄的开孔(<4.5Å),低孔隙率(<0.75)和低表面面积(<1000平方米/克)是基于膜的CO2 / N2分离的最佳材料。结果表明,水的存在会降低某些MOF膜的CO2 / N2选择性和CO2渗透性。这种逐步筛选程序的结果是,在未来的实验研究中要进行烟气分离研究的有前景的MOF膜的数量从数千减少到数十。最后,我们检查了MOF的结构与性能的关系,以了解哪些特性可带来最大的烟气分离前景,并得出结论,基于镧系元素的MOF具有狭窄的开孔(<4.5Å),低孔隙率(<0.75)和低表面面积(<1000平方米/克)是基于膜的CO2 / N2分离的最佳材料。在未来的实验研究中,用于烟气分离的有希望的MOF膜的数量已从数千减少到数十。最后,我们检查了MOF的结构与性能的关系,以了解哪些特性可带来最大的烟气分离前景,并得出结论,基于镧系元素的MOF具有狭窄的开孔(<4.5Å),低孔隙率(<0.75)和低表面面积(<1000平方米/克)是基于膜的CO2 / N2分离的最佳材料。在未来的实验研究中,用于烟气分离的有希望的MOF膜的数量已从数千减少到数十。最后,我们检查了MOF的结构与性能的关系,以了解哪些特性可带来最大的烟气分离前景,并得出结论,基于镧系元素的MOF具有狭窄的开孔(<4.5Å),低孔隙率(<0.75)和低表面面积(<1000平方米/克)是基于膜的CO2 / N2分离的最佳材料。
更新日期:2018-07-20
down
wechat
bug