当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power Dissipation of WSe2 Field-Effect Transistors Probed by Low-Frequency Raman Thermometry
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-06-28 00:00:00 , DOI: 10.1021/acsami.8b04724
Amirhossein Behranginia 1 , Zahra Hemmat 1 , Arnab K. Majee 2 , Cameron J. Foss 2 , Poya Yasaei 1 , Zlatan Aksamija 2 , Amin Salehi-Khojin 1
Affiliation  

The ongoing shrinkage in the size of two-dimensional (2D) electronic circuitry results in high power densities during device operation, which could cause a significant temperature rise within 2D channels. One challenge in Raman thermometry of 2D materials is that the commonly used high-frequency modes do not precisely represent the temperature rise in some 2D materials because of peak broadening and intensity weakening at elevated temperatures. In this work, we show that a low-frequency E2g2 shear mode can be used to accurately extract temperature and measure thermal boundary conductance (TBC) in back-gated tungsten diselenide (WSe2) field-effect transistors, whereas the high-frequency peaks (E2g1 and A1g) fail to provide reliable thermal information. Our calculations indicate that the broadening of high-frequency Raman-active modes is primarily driven by anharmonic decay into pairs of longitudinal acoustic phonons, resulting in a weak coupling with out-of-plane flexural acoustic phonons that are responsible for the heat transfer to the substrate. We found that the TBC at the interface of WSe2 and Si/SiO2 substrate is ∼16 MW/m2 K, depends on the number of WSe2 layers, and peaks for 3–4 layer stacks. Furthermore, the TBC to the substrate is the highest from the layers closest to it, with each additional layer adding thermal resistance. We conclude that the location where heat dissipated in a multilayer stack is as important to device reliability as the total TBC.

中文翻译:

低频拉曼测温探测的WSe 2场效应晶体管的功耗

二维(2D)电子电路尺寸的不断缩小导致在设备操作期间出现高功率密度,这可能会导致2D通道内的温度显着上升。2D材料拉曼测温的一个挑战是,由于在高温下峰变宽和强度减弱,常用的高频模式不能精确地表示某些2D材料中的温度升高。在这项工作中,我们证明了低频E 2g 2剪切模式可用于准确地提取温度并测量背栅二硒化钨(WSe 2)场效应晶体管中的热边界电导(TBC),而高频率峰值(E 2g 1和A 1g)无法提供可靠的热信息。我们的计算表明,高频拉曼-活动模态的扩展主要是由非谐衰变驱动而形成的成对的纵向声波声子,导致与平面外弯曲声波声子的耦合较弱,而平面外弯曲声声子则负责将热量传递给声表面波。基质。我们发现,WSe 2和Si / SiO 2衬底界面处的TBC约为16 MW / m 2 K,取决于WSe 2的数量层和3–4层堆栈的峰。此外,距基板最近的层的TBC最高,每个附加层都增加了热阻。我们得出结论,多层堆叠中的散热位置与整个TBC一样对设备可靠性同样重要。
更新日期:2018-06-28
down
wechat
bug