当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced hydrogen evolution of MoS2/RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer†
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2018-06-29 00:00:00 , DOI: 10.1039/c8qi00488a
Jinxue Guo 1, 2, 3, 4, 5 , Ke Zhang 1, 2, 3, 4, 5 , Yanfang Sun 6, 7, 8, 9 , Yingxia Zong 1, 2, 3, 4, 5 , Ziyang Guo 1, 2, 3, 4, 5 , Qingyun Liu 9, 10, 11, 12 , Xiao Zhang 1, 2, 3, 4, 5 , Yongyao Xia 13, 14, 15, 16, 17
Affiliation  

Layered MoS2 has been recognized as a promising low-cost alternative to Pt-based electrocatalysts towards the hydrogen evolution reaction (HER). Intensive interest has been mainly focused on designing MoS2 nanostructures with large amounts of active edge sites and fast charge transfer. Here we report the synthesis of vanadium and nitrogen co-doped MoS2 on reduced graphene oxide with new defect sites on the basal/edge planes and expanded interlayer spacing, which shows remarkable catalytic merits with an extremely low overpotential of 68 mV at 10 mA cm−2 and a Tafel slope of 41 mV dec−1. Its performance is superior to most current MoS2 electrocatalysts. In addition to the charge transfer benefits of the RGO substrate, the vanadium and nitrogen dopants trigger defect sites on the basal/edge planes, and an optimized electronic structure and expanded interlayer distance are also responsible for the enhancement in catalysis. This contribution may offer a potential way to design advanced MoS2 catalysts by modulating the defect sites and interlayer distance for efficient electrochemical water splitting.

中文翻译:

MoS 2 / RGO的氢气释放增强:钒,氮掺杂剂触发了新的活性位点并扩展了中间层

层状MoS 2已被公认为是针对氢生成反应(HER)的基于Pt的电催化剂的有前途的低成本替代品。人们一直集中在设计具有大量活性边缘位点和快速电荷转移的MoS 2纳米结构上。在这里,我们报道了在还原的氧化石墨烯上钒和氮共掺杂的MoS 2的合成,在基础/边缘平面上具有新的缺陷位点和扩大的层间间距,这显示出显着的催化性能,在10 mA cm处具有极低的过电位68 mV -2和Tafel斜率为41 mV dec -1。其性能优于大多数最新的MoS 2电催化剂。除了RGO基板的电荷转移优势外,钒和氮掺杂剂还可以触发基础/边缘平面上的缺陷位点,并且优化的电子结构和扩大的层间距离也可以促进催化作用。该贡献可通过调节缺陷位点和中间层距离来有效地进行电化学水分解,从而为设计先进的MoS 2催化剂提供一种潜在的途径。
更新日期:2018-06-29
down
wechat
bug