当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phototunable Biomemory Based on Light‐Mediated Charge Trap
Advanced Science ( IF 14.3 ) Pub Date : 2018-06-25 , DOI: 10.1002/advs.201800714
Ziyu Lv 1, 2 , Yan Wang 1 , Zhonghui Chen 3 , Long Sun 4 , Junjie Wang 1 , Meng Chen 5 , Zhenting Xu 5 , Qiufan Liao 6 , Li Zhou 1 , Xiaoli Chen 1 , Jieni Li 6 , Kui Zhou 1 , Ye Zhou 5 , Yu-Jia Zeng 6 , Su-Ting Han 1 , Vellaisamy A L Roy 2
Affiliation  

Phototunable biomaterial‐based resistive memory devices and understanding of their underlying switching mechanisms may pave a way toward new paradigm of smart and green electronics. Here, resistive switching behavior of photonic biomemory based on a novel structure of metal anode/carbon dots (CDs)‐silk protein/indium tin oxide is systematically investigated, with Al, Au, and Ag anodes as case studies. The charge trapping/detrapping and metal filaments formation/rupture are observed by in situ Kelvin probe force microscopy investigations and scanning electron microscopy and energy‐dispersive spectroscopy microanalysis, which demonstrates that the resistive switching behavior of Al, Au anode‐based device are related to the space‐charge‐limited‐conduction, while electrochemical metallization is the main mechanism for resistive transitions of Ag anode‐based devices. Incorporation of CDs with light‐adjustable charge trapping capacity is found to be responsible for phototunable resistive switching properties of CDs‐based resistive random access memory by performing the ultraviolet light illumination studies on as‐fabricated devices. The synergistic effect of photovoltaics and photogating can effectively enhance the internal electrical field to reduce the switching voltage. This demonstration provides a practical route for next‐generation biocompatible electronics.

中文翻译:


基于光介导电荷陷阱的光可调生物记忆



基于光可调生物材料的电阻存储器件以及对其底层开关机制的理解可能为智能和绿色电子产品的新范例铺平道路。在这里,以铝、金和银阳极为案例研究,系统地研究了基于金属阳极/碳点(CD)-丝蛋白/氧化铟锡新型结构的光子生物记忆的电阻切换行为。通过原位开尔文探针力显微镜研究、扫描电子显微镜和能量色散光谱微分析观察到电荷俘获/解俘获和金属丝的形成/断裂,这表明铝、金阳极器件的电阻开关行为与空间电荷限制传导,而电化学金属化是银阳极器件电阻转变的主要机制。通过对制造的器件进行紫外光照明研究,发现具有光可调电荷捕获能力的 CD 的结合是基于 CD 的阻变随机存取存储器的光可调阻变特性的原因。光伏和光电门控的协同效应可以有效增强内部电场以降低开关电压。该演示为下一代生物相容性电子产品提供了一条实用途径。
更新日期:2018-06-25
down
wechat
bug