当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance
Fuel Processing Technology ( IF 7.5 ) Pub Date : 2018-10-01 , DOI: 10.1016/j.fuproc.2018.06.012
Ping Zhang , Haiyan Liu , Yuanyuan Yue , Haibo Zhu , Xiaojun Bao

Abstract Hydroisomerization of light straight-chain paraffins to their branched isomers especially di-branched ones is considered as a promising technology to produce clean gasoline blending component with high octane number. In this article, we report a superior hydroisomerization catalyst that is based on a SAPO-11 molecular sieve (SAPO-11-H) simultaneously with smaller crystal size, hierarchical pore structure and enhanced acidity. This novel SAPO-11-H was successfully synthesized via a two-stage hydrothermal crystallization route by simultaneously using a cationic surfactant cetyltrimethylammonium bromide (CTAB) as template and a nonionic copolymer poly(ethylene oxide)‑block‑poly(propylene oxide)‑block‑poly(ethylene oxide) (F127) as crystal growth inhibitor. During the crystallization, CTAB plays roles in enhancing the acidity and creating the mesoporous structure, and F127 serves as a crystal growth inhibitor to control the crystals size. Compared to two Pt catalysts supported on a conventional SAPO-11 and a commercial SAPO-11, the SAPO-11-H supported Pt/SAPO-11-H catalyst with the same Pt loading (0.5 wt%) exhibited superior selectivity to di-branched C8 isomers and dramatically lower cracking selectivity in n‑octane hydroisomerization. The outstanding performance of Pt/SAPO-11-H is mainly attributed to two factors: one is the highly exposed pore mouths and hierarchical pore structure of SAPO-11-H that benefit the formation of di-branched isomers and avoid the cracking of the resultant di-branched isomers, and the other is the enhanced acidity that boosts the hydroisomerization activity.

中文翻译:

直接合成具有增强加氢异构化性能的分层 SAPO-11 分子筛

摘要 轻质直链烷烃加氢异构化为其支链异构体,尤其是二支链异构体,被认为是生产高辛烷值清洁汽油调和组分的一项有前景的技术。在本文中,我们报告了一种基于 SAPO-11 分子筛 (SAPO-11-H) 的优异加氢异构化催化剂,同时具有更小的晶体尺寸、分级孔结构和增强的酸度。通过同时使用阳离子表面活性剂十六烷基三甲基溴化铵 (CTAB) 和非离子共聚物聚(环氧乙烷)-嵌段-聚(环氧丙烷)-嵌段,通过两阶段水热结晶路线成功合成了这种新型 SAPO-11-H -聚(环氧乙烷)(F127)作为晶体生长抑制剂。在结晶过程中,CTAB 在增强酸度和形成介孔结构方面发挥作用,F127 作为晶体生长抑制剂来控制晶体尺寸。与负载在传统 SAPO-11 和商业 SAPO-11 上的两种 Pt 催化剂相比,具有相同 Pt 负载量(0.5 wt%)的 SAPO-11-H 负载的 Pt/SAPO-11-H 催化剂表现出优异的选择性。支链 C8 异构体,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于双支化异构体的形成,避免了结构的开裂。得到的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。F127作为晶体生长抑制剂来控制晶体尺寸。与负载在传统 SAPO-11 和商业 SAPO-11 上的两种 Pt 催化剂相比,具有相同 Pt 负载量(0.5 wt%)的 SAPO-11-H 负载的 Pt/SAPO-11-H 催化剂表现出优异的选择性。支链 C8 异构体,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于二支化异构体的形成,避免了结构的开裂。得到的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。F127作为晶体生长抑制剂来控制晶体尺寸。与负载在传统 SAPO-11 和商业 SAPO-11 上的两种 Pt 催化剂相比,具有相同 Pt 负载量(0.5 wt%)的 SAPO-11-H 负载的 Pt/SAPO-11-H 催化剂表现出优异的选择性。支链 C8 异构体,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于二支化异构体的形成,避免了结构的开裂。得到的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。与负载在传统 SAPO-11 和商业 SAPO-11 上的两种 Pt 催化剂相比,具有相同 Pt 负载量(0.5 wt%)的 SAPO-11-H 负载的 Pt/SAPO-11-H 催化剂表现出优异的选择性。支链 C8 异构体,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于二支化异构体的形成,避免了结构的开裂。得到的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。与负载在传统 SAPO-11 和商业 SAPO-11 上的两种 Pt 催化剂相比,具有相同 Pt 负载量(0.5 wt%)的 SAPO-11-H 负载的 Pt/SAPO-11-H 催化剂表现出优异的选择性。支链 C8 异构体,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于双支化异构体的形成,避免了结构的开裂。得到的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。5 wt%) 对双支链 C8 异构体表现出优异的选择性,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于双支化异构体的形成,避免了结构的开裂。产生的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。5 wt%) 对双支链 C8 异构体表现出优异的选择性,并在正辛烷加氢异构化中显着降低裂解选择性。Pt/SAPO-11-H 的优异性能主要归功于两个因素:一是 SAPO-11-H 高度暴露的孔口和分级孔结构有利于二支化异构体的形成,避免了结构的开裂。得到的二支化异构体,另一个是增强的酸度,提高了加氢异构化活性。
更新日期:2018-10-01
down
wechat
bug