当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design Principles for Enhancing Sensitivity in Paper-Based Diagnostics via Large-Volume Processing
Analytical Chemistry ( IF 6.7 ) Pub Date : 2018-06-20 00:00:00 , DOI: 10.1021/acs.analchem.8b02113
Eric A. Miller 1 , Yara Jabbour Al Maalouf 1 , Hadley D. Sikes 1
Affiliation  

In this work, we characterize the impact of large-volume processing upon the analytical sensitivity of flow-through paper-based immunoassays. Larger sample volumes feature greater molar quantities of available analyte, but the assay design principles which would enable the rapid collection of this dilute target are ill-defined. We developed a finite-element model to explore the operating conditions under which processing large sample volumes via pressure-driven convective flow would yield an improved binding signal. Our simulation results underscore the importance of establishing a high local concentration of the analyte-binding species within the porous substrate. This elevated abundance serves to enhance the binding kinetics, matching the time scale of target capture to the period during which the sample is in contact with the test zone (i.e., the effective residence time). These findings were experimentally validated using the rcSso7d-cellulose-binding domain (CBD) fusion construct, a bifunctional binding protein which adsorbs to cellulose in high abundance. As predicted by our modeling efforts, the local concentration achieved using the rcSso7d-CBD species is uniquely enabling for sensitivity enhancement through large-volume processing. The rapid analyte depletion which occurs at this high surface density also permits the processing of large sample volumes within practical time scales and flow regimes. Using these findings, we present guidance for the optimal means of processing large sample volumes for enhanced assay sensitivity.

中文翻译:

通过大批量处理提高纸质诊断灵敏度的设计原则

在这项工作中,我们表征了大批量处理对基于流通纸的免疫测定方法的分析灵敏度的影响。较大的样品量具有更多的可用分析物摩尔量,但是无法快速收集该稀释目标的分析设计原理尚不确定。我们开发了一个有限元模型来探索操作条件,在该条件下,通过压力驱动的对流流动处理大量样品会产生改善的结合信号。我们的模拟结果强调了在多孔基质中建立高浓度的分析物结合物质的重要性。这种增加的丰度有助于增强结合动力学,使靶标捕获的时间尺度与样品与测试区接触的时间段(即,有效停留时间)。这些发现使用rcSso7d-纤维素结合域(CBD)融合构建体进行了实验验证,该融合构建体是一种双功能结合蛋白,可大量吸附到纤维素上。正如我们的建模工作所预测的那样,使用rcSso7d-CBD物种获得的局部浓度可通过大量处理而独特地提高灵敏度。在如此高的表面密度下发生的快速分析物耗竭也允许在实际的时间范围和流量范围内处理大量样品。利用这些发现,我们为处理大量样品以提高测定灵敏度的最佳方法提供了指导。一种双功能结合蛋白,可大量吸附到纤维素上。正如我们的建模工作所预测的那样,使用rcSso7d-CBD物种获得的局部浓度可通过大量处理而独特地提高灵敏度。在如此高的表面密度下发生的快速分析物耗竭也允许在实际的时间范围和流量范围内处理大量样品。利用这些发现,我们为处理大量样品以提高测定灵敏度的最佳方法提供了指导。一种双功能结合蛋白,可大量吸附到纤维素上。正如我们的建模工作所预测的那样,使用rcSso7d-CBD物种获得的局部浓度可通过大量处理而独特地提高灵敏度。在如此高的表面密度下发生的快速分析物耗竭也允许在实际的时间范围和流量范围内处理大量样品。利用这些发现,我们为处理大量样品以提高测定灵敏度的最佳方法提供了指导。在如此高的表面密度下发生的快速分析物耗竭也允许在实际的时间范围和流量范围内处理大量样品。利用这些发现,我们为处理大量样品以提高测定灵敏度的最佳方法提供了指导。在如此高的表面密度下发生的快速分析物耗竭也允许在实际的时间范围和流量范围内处理大量样品。利用这些发现,我们为处理大量样品以提高测定灵敏度的最佳方法提供了指导。
更新日期:2018-06-20
down
wechat
bug