当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of premixed combustion using the modified dynamic thickened flame model coupled with multi-step reaction mechanism
Fuel ( IF 7.4 ) Pub Date : 2018-12-01 , DOI: 10.1016/j.fuel.2018.06.074
Shilong Guo , Jinhua Wang , Xutao Wei , Senbin Yu , Meng Zhang , Zuohua Huang

Thickened flame (TF) model is one of the effective methods to resolve the flame front in turbulent premixed combustion modeling. The multi-step reaction mechanism is becoming increasingly important for combustion simulations such as pollutant formation, ignition and extinction. The effect of TF model on flame structures when coupling with multi-step reaction mechanism was investigated. The simulation results show that, no matter in laminar or turbulent condition, the global TF model coupling with multi-step reaction mechanism results in an incomplete combustion, which is mainly due to the enhanced species diffusion. Although Durand and Polifke's dynamic thickened flame (DTF) sensor performs well for predicting laminar flame structure when coupling with multi-step reaction mechanism, it underestimates the effective thickening factor. In turbulent premixed flame simulation, the underestimated thickening factor leads to a faster local fuel consumption speed because of the over-predicted sub-grid flame wrinkling factor. A modified DTF sensor suitable for multi-step reaction mechanism is proposed. This sensor using the hyperbolic tangent function of progress variable to calculate thickening factor dynamically. It ensures that both the preheated and reaction zones are thickened effectively. The sub-grid wrinkling factor is hence estimated corresponding to the calculated flame thickness. Results of 1D laminar and 3D turbulent flame show that this method performs well for predicting both burned gas temperature and species concentration in burnt gas, which is important for predicting emissions. (Less)

中文翻译:

结合多步反应机理的修正动态浓密火焰模型预混燃烧数值模拟

加厚火焰(TF)模型是求解湍流预混燃烧建模中火焰前沿的有效方法之一。多步反应机制对于污染物形成、点火和熄灭等燃烧模拟变得越来越重要。研究了TF模型与多步反应机理耦合时火焰结构的影响。模拟结果表明,无论是层流还是湍流,全局TF模型与多步反应机理耦合导致不完全燃烧,这主要是由于物种扩散增强所致。尽管 Durand 和 Polifke 的动态增厚火焰 (DTF) 传感器在与多步反应机制耦合时在预测层流火焰结构方面表现良好,但它低估了有效增厚因子。在湍流预混火焰模拟中,由于过度预测的亚网格火焰起皱因子,低估的增稠因子导致更快的局部燃料消耗速度。提出了一种适用于多步反应机制的改进型 DTF 传感器。该传感器使用进度变量的双曲正切函数动态计算稠化因子。它确保预热区和反应区都有效增稠。因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)由于高估的亚网格火焰起皱因子,低估的稠化因子导致更快的局部燃料消耗速度。提出了一种适用于多步反应机制的改进型 DTF 传感器。该传感器使用进度变量的双曲正切函数动态计算稠化因子。它确保预热区和反应区都有效增稠。因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)由于高估的亚网格火焰起皱因子,低估的稠化因子导致更快的局部燃料消耗速度。提出了一种适用于多步反应机制的改进型 DTF 传感器。该传感器使用进度变量的双曲正切函数动态计算稠化因子。它确保预热区和反应区都有效增稠。因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)提出了一种适用于多步反应机制的改进型 DTF 传感器。该传感器使用进度变量的双曲正切函数动态计算稠化因子。它确保预热区和反应区都有效增稠。因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)提出了一种适用于多步反应机制的改进型 DTF 传感器。该传感器使用进度变量的双曲正切函数动态计算稠化因子。它确保预热区和反应区都有效增稠。因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)因此根据计算出的火焰厚度估计子网格起皱因子。1D 层流火焰和 3D 湍流火焰的结果表明,该方法在预测燃烧气体温度和燃烧气体中的物种浓度方面表现良好,这对于预测排放很重要。(较少的)
更新日期:2018-12-01
down
wechat
bug