当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures
Progress in Energy and Combustion Science ( IF 32.0 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.pecs.2018.05.003
Alexander A. Konnov , Akram Mohammad , Velamati Ratna Kishore , Nam Il Kim , Chockalingam Prathap , Sudarshan Kumar

Abstract Accurate measurement and prediction of laminar burning velocity is important for characterization of premixed combustion properties of a fuel, development and validation of new kinetic models, and calibration of turbulent combustion models. Understanding the variation of laminar burning velocity with thermodynamic conditions is important from the perspective of practical applications in industrial furnaces, gas turbine combustors and rocket engines as operating temperatures and pressures are significantly higher than ambient conditions. With this perspective, a brief review of spherical flame propagation method, counterflow/stagnation burner method, heat-flux method, annular stepwise method, externally heated diverging channel method, and Bunsen method is presented. A direct comparison of power exponents for temperature (α) and pressure (β) obtained from different experiments and derived from various kinetic mechanisms is reported to provide an independent tool for detailed validation of kinetic schemes. Accurate prediction of laminar burning velocities at higher temperatures and pressures for individual fuels will help in closer scrutiny of the existing experimental data for various uncertainties due to inherent challenges in individual measurement techniques. Laminar burning velocity data for hydrogen (H2), gaseous alkane fuels (methane, ethane, propane, n-butane, n-pentane), liquid alkane fuels (n-heptane, isooctane, n-decane), alcohols (CH3OH, C2H5OH, n-propanol, n-butanol, n-pentanol) and di-methyl ether (DME) are obtained from literature of last three decades for a wide range of pressures (1–10 bar), temperatures (300–700 K), equivalence ratios and mixture dilutions. The available experimental and numerical data for H2 and methane fuels compares well for various pressures and temperatures. However, more experimental and kinetic model development studies are required for other fuels. Comparison of laminar burning velocity data obtained from different measurement techniques at higher initial pressures and temperatures showed significant deviations for all fuels. This suggests to conduct focused measurements at elevated pressure and temperature conditions for different fuels to enable the development of accurate kinetic models for wider range of mixtures and thermodynamic conditions.

中文翻译:

对各种燃料 + 空气混合物的层流燃烧速度的测量和数据分析的全面审查

摘要 层流燃烧速度的准确测量和预测对于表征燃料的预混燃烧特性、新动力学模型的开发和验证以及湍流燃烧模型的校准非常重要。从工业炉、燃气轮机燃烧室和火箭发动机的实际应用的角度来看,了解层流燃烧速度随热力学条件的变化非常重要,因为工作温度和压力明显高于环境条件。从这个角度出发,对球形火焰传播法、逆流/滞流燃烧器法、热通量法、环形阶梯法、外加热发散通道法和本生法进行了简要回顾。据报道,对从不同实验获得并从各种动力学机制得出的温度 (α) 和压力 (β) 的幂指数进行直接比较,为详细验证动力学方案提供了一个独立的工具。由于个别测量技术的固有挑战,准确预测单个燃料在较高温度和压力下的层流燃烧速度将有助于更仔细地审查现有实验数据的各种不确定性。氢气 (H2)、气态烷烃燃料(甲烷、乙烷、丙烷、正丁烷、正戊烷)、液态烷烃燃料(正庚烷、异辛烷、正癸烷)、醇类(CH3OH、C2H5OH、正丙醇、正丁醇、正戊醇)和二甲醚 (DME) 是从过去三十年的文献中获得的,适用于各种压力(1-10 巴),温度 (300–700 K)、当量比和混合物稀释。可用的 H2 和甲烷燃料的实验和数值数据在各种压力和温度下进行了比较。然而,其他燃料需要更多的实验和动力学模型开发研究。在较高初始压力和温度下从不同测量技术获得的层流燃烧速度数据的比较显示所有燃料都有显着偏差。这建议在升高的压力和温度条件下对不同燃料进行重点测量,以便为更广泛的混合物和热力学条件开发准确的动力学模型。可用的 H2 和甲烷燃料的实验和数值数据在各种压力和温度下进行了比较。然而,其他燃料需要更多的实验和动力学模型开发研究。在较高初始压力和温度下从不同测量技术获得的层流燃烧速度数据的比较表明所有燃料都有显着的偏差。这建议在升高的压力和温度条件下对不同燃料进行重点测量,以便为更广泛的混合物和热力学条件开发准确的动力学模型。可用的 H2 和甲烷燃料的实验和数值数据在各种压力和温度下进行了比较。然而,其他燃料需要更多的实验和动力学模型开发研究。在较高初始压力和温度下从不同测量技术获得的层流燃烧速度数据的比较表明所有燃料都有显着的偏差。这建议在升高的压力和温度条件下对不同燃料进行重点测量,以便为更广泛的混合物和热力学条件开发准确的动力学模型。在较高初始压力和温度下从不同测量技术获得的层流燃烧速度数据的比较表明所有燃料都有显着的偏差。这建议在升高的压力和温度条件下对不同燃料进行重点测量,以便为更广泛的混合物和热力学条件开发准确的动力学模型。在较高初始压力和温度下从不同测量技术获得的层流燃烧速度数据的比较显示所有燃料都有显着偏差。这建议在升高的压力和温度条件下对不同燃料进行重点测量,以便为更广泛的混合物和热力学条件开发准确的动力学模型。
更新日期:2018-09-01
down
wechat
bug