当前位置: X-MOL 学术J. Magn. Magn. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direction-dependent electronic phase transition in magnetic field-induced gated phosphorene
Journal of Magnetism and Magnetic Materials ( IF 2.7 ) Pub Date : 2018-11-01 , DOI: 10.1016/j.jmmm.2018.06.052
H.D. Bui , Mohsen Yarmohammadi

Abstract A detailed physical meaning of the electronic phase transition in monolayer black phosphorus (BP) has been addressed in the presence of local gate voltage and Zeeman magnetic field. The main features of this transition characterize through the electronic density of states (DOS) in the vicinity of the Fermi level. The numerical calculations have been performed within the continuum approximation of tight-binding model and the Green’s function method. The anisotropy crystal structure of BP causes different behaviors in each component of DOS. First, we have confirmed the Zeeman effect, i.e. the splitting of Van Hove singularities. Then, our results show that the electronic band gap of phosphorene along the x -direction decreases with weak magnetic fields when the gate voltage is absent and the system transits to the semimetallic phase at strong regimes, whereas there is no phase transition along the y -direction. Interestingly, turning on the gate, phase transition independent of the direction does not occur at both weak and strong magnetic fields. Another remarkable point refers to the increase of the band gap with gate voltage at both directions, leading to the semimetallic-semiconductor transition along the x -direction at strong magnetic fields. Tuning the band gap by the gate voltage and magnetic field are useful for future applications of BP.

中文翻译:

磁场诱导门控磷烯中的方向相关电子相变

摘要 在存在局部栅极电压和塞曼磁场的情况下,已经解决了单层黑磷 (BP) 中电子相变的详细物理意义。这种跃迁的主要特征在于费米能级附近的电子态密度 (DOS)。数值计算是在紧束缚模型的连续近似和格林函数方法中进行的。BP 的各向异性晶体结构在 DOS 的每个组件中导致不同的行为。首先,我们确认了塞曼效应,即范霍夫奇点的分裂。然后,我们的结果表明,当栅极电压不存在时,磷烯沿 x 方向的电子带隙随着弱磁场而减小,并且系统在强状态下过渡到半金属相,而沿 y 方向没有相变。有趣的是,打开栅极,在弱磁场和强磁场下都不会发生与方向无关的相变。另一个值得注意的点是两个方向的带隙随着栅极电压的增加而增加,导致在强磁场下沿 x 方向的半金属-半导体跃迁。通过栅极电压和磁场调整带隙对于 BP 的未来应用非常有用。在弱磁场和强磁场中都不会发生与方向无关的相变。另一个值得注意的点是两个方向的带隙随着栅极电压的增加而增加,导致在强磁场下沿 x 方向的半金属-半导体跃迁。通过栅极电压和磁场调整带隙对于 BP 的未来应用非常有用。在弱磁场和强磁场中都不会发生与方向无关的相变。另一个值得注意的点是两个方向的带隙随着栅极电压的增加而增加,导致在强磁场下沿 x 方向的半金属-半导体跃迁。通过栅极电压和磁场调整带隙对于 BP 的未来应用非常有用。
更新日期:2018-11-01
down
wechat
bug