当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discovery and Evolution of Polyoxopalladates
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2018-06-18 00:00:00 , DOI: 10.1021/acs.accounts.8b00082
Peng Yang 1 , Ulrich Kortz 1
Affiliation  

Noble metal catalysts, in particular palladium-containing materials, are of prime commercial interest, because of their role as oxidation catalysts in automobile emission-control systems and reforming catalysts for the production of high-octane gasoline. However, despite almost two centuries of research, the precise structure of such materials is still ill-defined on the sub-nanometer scale, which severely limits the understanding of the underlying catalytic mechanisms. As a burgeoning class of structurally well-defined noble metal oxide nanoclusters, polyoxopalladates (POPs) have been highly rated as ideal models to fully decipher the molecular mechanism of noble metal-based catalysis. Being at the frontier of polyoxometalates (POMs), the chemistry of POPs, which are based exclusively on PdII centers as addenda is currently progressing rapidly, owing to their structural and compositional novelty, high solution stability, combined with promising applications especially as noble metal-based catalysts. Controlled hydrolysis–condensation processes of square-planar PdIIO4 units in the presence of external oxyacid heterogroups (e.g., AsO43–, PO43–, and SeO32–) drive the self-assembly of such discrete, polynuclear PdII-oxo nanoclusters in facile one-pot reactions using aqueous solvents. By now, more than 70 POPs have been discovered, encompassing a large structural variety, including cube, star, bowl, dumbbell, wheel, and open-shell archetypes. Moreover, the POP cages can serve as adaptable molecular containers for encapsulation/interaction with a range of metallic elements across the s, p, d, and f blocks of the periodic table, resulting in a library of host–guest assemblies of varying shapes and sizes. Besides a delicate balance of experimental variables, the fine-tuning of POP structure, composition, and properties is possible by systematic replacement of the metal ion guest and/or the capping heterogroups. Besides, nearly all POPs obtained so far could be perfectly rationalized by theoretical calculations, and even prediction of the design and synthesis of new POP structures is possible.

中文翻译:

聚草酸盐的发现与演化

贵金属催化剂,特别是含钯材料,由于在汽车排放控制系统中作为氧化催化剂和用于生产高辛烷值汽油的重整催化剂而起着重要的商业意义。然而,尽管进行了近两个世纪的研究,但此类材料的精确结构仍在亚纳米尺度上定义不清,这严重限制了对潜在催化机理的理解。作为一类新兴的结构良好的贵金属氧化物纳米簇,聚氧杂钯酸盐(POPs)被认为是理想的模型,可以充分解读贵金属基催化的分子机理。POPs是多金属氧酸盐(POM)的前沿技术,仅基于Pd II由于其结构和组成的新颖性,高的溶液稳定性以及有希望的应用,特别是作为贵金属基催化剂,这些中心作为附加物正在快速发展。在存在外部含氧酸杂基团(例如,AsO 4 3–,PO 4 3–和SeO 3 2–)的情况下,方形平面Pd II O 4单元的受控水解-缩合过程驱动了这种离散的多核的自组装钯-oxo纳米簇在使用水性溶剂的便捷一锅反应中。到现在为止,已经发现了70多种POP,其中包括各种各样的结构,包括立方体,星形,碗形,哑铃形,轮形和开壳原型。此外,POP笼可以用作适应性分子容器,用于与spdf上的一系列金属元素进行封装/相互作用周期表中的块,从而形成了一个形状和大小各异的主宾装配体库。除了实验变量之间的微妙平衡外,还可以通过系统地置换金属离子客体和/或封端杂基来对POP的结构,组成和性质进行微调。此外,到目前为止,几乎所有的持久性有机污染物都可以通过理论计算完美地合理化,甚至可以预测新的持久性有机污染物结构的设计和合成。
更新日期:2018-06-18
down
wechat
bug