当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanically Robust, Sodium-Ion Conducting Membranes for Nonaqueous Redox Flow Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2018-06-18 00:00:00 , DOI: 10.1021/acsenergylett.8b00680
Rose E. Ruther 1 , Guang Yang 1 , Frank M. Delnick 1 , Zhijiang Tang 1, 2 , Michelle L. Lehmann 1 , Tomonori Saito 1 , Yujie Meng 3 , Thomas A. Zawodzinski 1, 2 , Jagjit Nanda 1, 2
Affiliation  

Sodium-based batteries are promising for grid-storage applications because of significantly lower cost compared to lithium-based systems. The advancement of solid-state and redox-flow sodium-ion batteries requires sodium-ion exchange membranes with high conductivity, electrochemical stability, and mechanical robustness. This study demonstrates that membranes based on poly(ethylene oxide) (PEO) can meet these requirements. Membranes plasticized with tetraethylene glycol dimethyl ether (TEGDME) achieve high ionic conductivity. Plasticized PEO membranes containing sodium triflate salt (NaTFS) show about 2 orders of magnitude higher conductivity compared to nonplasticized PEO membranes. Results from vibrational spectroscopy and differential scanning calorimetry describe the coordination chemistry in these multiphase materials and explain the mechanisms behind the increased conductivity. The mechanical properties of the membranes improve by addition of 5 wt % sodium carboxymethyl cellulose (CMC) without compromising the conductivity or electrochemical stability against sodium metal. The optimized membrane is an excellent candidate for low-cost energy storage systems that operate over a wide voltage window near ambient temperature.

中文翻译:

机械坚固的钠离子导电膜,用于非水氧化还原液流电池

钠基电池因其与锂基系统相比的成本大大降低而有望用于电网存储应用。固态和氧化还原流钠离子电池的发展需要具有高电导率,电化学稳定性和机械强度的钠离子交换膜。这项研究表明,基于聚环氧乙烷(PEO)的膜可以满足这些要求。用四甘醇二甲醚(TEGDME)增塑的膜可实现高离子电导率。与未增塑的PEO膜相比,含三氟甲磺酸钠(NaTFS)的增塑的PEO膜的电导率高约2个数量级。振动光谱法和差示扫描量热法的结果描述了这些多相材料中的配位化学,并解释了电导率增加的机理。通过添加5重量%的羧甲基纤维素钠(CMC)来改善膜的机械性能,而不损害对钠金属的电导率或电化学稳定性。经过优化的膜是低成本能量存储系统的理想选择,该系统可在接近环境温度的宽电压范围内运行。
更新日期:2018-06-18
down
wechat
bug