当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring
Materials Horizons ( IF 13.3 ) Pub Date : 2018-06-18 00:00:00 , DOI: 10.1039/c8mh00326b
O. Baranov 1, 2, 3, 4, 5 , I. Levchenko 6, 7, 8, 9, 10 , J. M. Bell 10, 11, 12, 13 , J. W. M. Lim 6, 7, 8, 9, 14 , S. Huang 6, 7, 8, 9 , L. Xu 6, 7, 8, 9 , B. Wang 15, 16, 17, 18 , D. U. B. Aussems 19, 20, 21 , S. Xu 6, 7, 8, 9 , K. Bazaka 10, 11, 12, 13
Affiliation  

Driven by the innate tendency of the system to attain a local energy minimum, self-organization enables the creation of complex systems out of relatively simple parts and elements. The ability to form hierarchical, multicomponent systems that may be difficult, or even impossible, to fabricate using pre-set, template-enabled processes makes self-organisation very attractive for the synthesis and assembly of advanced material systems across multiple length scales. Yet, driving and controlling such self-organisation processes is not a trivial task as they often arise from a complex interplay of physical and chemical processes. These in turn depend on the environment in which self-organisation takes place. In this topical review, we focus on one such environment and outline unique opportunities, salient characteristics and challenges presented by self-organization on surfaces exposed to partially ionised gases, i.e. plasmas. Using a select number of recent examples, we aim to show how salient features of plasma environments, particularly high fluxes of energy and matter from the plasma to the surface, enable functionalization and growth of complex nanostructures and metamaterials via self-organization on plasma-exposed surfaces. We will show how by controlling different physical and chemical parameters of the plasma environment and how it interacts with surfaces, it is possible to control self-organization processes at multiple length scales, making it a promising enabling platform for nanosynthesis. We will discuss examples starting from the self-driven growth of perfect crystalline lattices, such as nano-diamonds and graphenes at the nanoscale, all the way to template- and pattern-free synthesis of large, highly ordered arrays of nanostructures at millimetre and even centimetre scales. We will outline the key enabling features of plasmas that drive these processes at respective scales, focusing predominantly on plasma-induced electric fields at the surface or in the plasma-nanostructure sheath, as well as charge-related effects. The outlook section summarizes advantages of plasma-driven self-organization, and outlines principal challenges and opportunities for the development of this field.

中文翻译:

从纳米到毫米:一系列支持等离子体的表面功能化和纳米结构化的功能

由于系统固有的趋向于达到局部最低能耗的趋势,自组织使得能够使用相对简单的零件和元素来创建复杂的系统。使用预设的,启用模板的工艺来形成可能难以甚至无法制造的分层,多组件系统的能力,使得自组织对于跨多个长度尺度的先进材料系统的合成和组装非常有吸引力。然而,驱动和控制这种自组织过程并不是一件容易的事,因为它们通常是由物理和化学过程的复杂相互作用所引起的。这些又取决于发生自组织的环境。在本主题评估中,我们重点介绍了一种这样的环境,并概述了独特的机会,等离子体。我们使用精选的一些最新实例,旨在展示等离子体环境的显着特征,特别是从等离子体到表面的高能量和物质通量,如何通过复杂的纳米结构和超材料实现功能化和生长在暴露于等离子体的表面上的自组织。我们将展示如何通过控制等离子体环境的不同物理和化学参数以及它如何与表面相互作用,来控制多种长度尺度的自组织过程,从而使其成为纳米合成的有希望的实现平台。我们将讨论一些示例,这些示例将从完美驱动的完美晶格的生长开始,例如纳米级的纳米金刚石和石墨烯,一直到无模板和无图案的合成方法,以无模板和无图案的方式合成大型,有序排列的毫米级甚至纳米级的纳米结构。厘米秤。我们将概述在各个尺度上驱动这些过程的等离子体的关键启用特征,主要集中于表面或等离子体纳米结构护套中的等离子体感应电场,以及与电荷相关的效应。展望部分总结了等离子体驱动的自组织的优点,并概述了该领域发展的主要挑战和机遇。
更新日期:2018-06-18
down
wechat
bug