当前位置: X-MOL 学术Proc. Combust. Inst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The growth of PAHs and soot in the post-flame region
Proceedings of the Combustion Institute ( IF 3.4 ) Pub Date : 2018-06-15 , DOI: 10.1016/j.proci.2018.05.047
Peng Liu , Zepeng Li , William L. Roberts

The PAHs-C2H2 pathway (PAHs + C2H2 → intermediate → product + H2) has been shown, in theory, to be the important contributor to the growth of polycyclic aromatic hydrocarbons (PAHs) and soot in the post-flame region where H atoms are rare. Calculations of the potential energy surface (PES) using the DFT B3LYP 6-311 + G(d,p) method, and the reaction rate coefficients using the RRKM theory, reveal that armchair and bridge surface sites share similar kinetic characteristics, and are more likely to be the targets of C2H2 molecules in flames compared to zig-zag and 5-membered ring surface sites. Results show that the energy barrier of a 2-H elimination reaction (14–23.8 kcal/mol) is much lower than that of a 1-H elimination (typically 30–40 kcal/mol) for some molecules. The formation of pyrene from phenanthrene via HACA (PAHs + H → PAHs radical (+ C2H2) → intermediate → product + H) and PAHs-C2H2 pathways is investigated using a closed homogeneous zero-dimensional reactor with combustion parameters abstracted from the premixed stagnation C2H4/O2/Ar sooting flame. Results show that the HACA pathway is the dominant pathway for the formation of PAHs and soot surface growth in the main-flame region where H atoms are abundant, but that the PAHs-C2H2 pathway is the preferred pathway in the post-flame region. Our study also suggests that the soot nucleation involving a chemical coalescence of moderate-sized PAHs into a crosslinked three-dimensional structure via the addition reactions of PAHs and PAH radicals in the main-flame region should be considered for inclusion in any soot modeling.



中文翻译:

火焰后区域中PAH和烟灰的生长

从理论上讲,PAHs-C 2 H 2途径(PAHs + C 2 H 2  →中间体→产物+ H 2)已被证明是后期多环芳烃(PAHs)和烟灰生长的重要因素。 -H原子稀有的火焰区域。使用DFT B3LYP 6-311 + G(d,p)方法计算势能表面(PES),并使用RRKM理论计算反应速率系数,发现扶手椅和桥表面的位置具有相似的动力学特性,并且更多可能是C 2 H 2的目标与之字形和5元环表面位点相比,火焰中的分子含量更高。结果表明,对于某些分子,2-H消除反应的能垒(14–23.8 kcal / mol)比1-H消除反应的能垒(通常为30–40 kcal / mol)低得多。使用具有燃烧参数的封闭均质零维反应器,研究了通过HACA(菲+ H→PAHs自由基(+ C 2 H 2)→中间体→产物+ H)和PAHs-C 2 H 2途径由菲形成of的过程。从预混停滞中提取C 2 H 4 / O 2/ Ar吹灰。结果表明,HACA途径是在H原子丰富的主火焰区域中PAHs形成和烟灰表面生长的主要途径,而PAHs-C 2 H 2途径是火焰后的首选途径地区。我们的研究还表明,在任何烟灰模型中都应考虑通过中等火焰中PAH和PAH自由基在主火焰区域的加成反应将中等大小的PAHs化学聚结成交联的三维结构的烟灰成核。

更新日期:2018-06-16
down
wechat
bug