当前位置: X-MOL 学术J. Mater. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and computational conductivity study of multilayer graphene in polypropylene nanocomposites†
Journal of Materials Chemistry C ( IF 5.7 ) Pub Date : 2018-06-15 00:00:00 , DOI: 10.1039/c8tc01135d
Roxana M. del Castillo 1, 2, 3, 4, 5 , Luis F. del Castillo 3, 4, 5, 6, 7 , Alipio G. Calles 1, 2, 3, 4, 5 , Compañ Vicente 8, 9, 10, 11, 12
Affiliation  

We study the electric conductivity of compounds formed by multilayer graphene in polypropylene. Our study makes a comparative analysis between the experimental and computational results. To obtain an experimental measurement of the electronic properties, we deposited multilayer graphene (MLG) nanoparticles over a polypropylene matrix. The deposition was made over several stages, in which we added to the polymer matrix different percentages of MLG nanoparticles using the melt compounding technique, and we studied the conductivities of the nanocomposites by means of electrochemical impedance spectroscopy (EIS). The second part consists of computational calculations, in which we studied the electronic properties of a graphene sheet under a polypropylene molecule with different slabs in the monomer. In both analyses, there is a strong percolation phenomenon with a percolation threshold of around 18% of the MLG nanoparticles. Before the percolation threshold, the charge carriers are constrained in the polypropylene molecule, making the system an insulating material and creating p-type doping. After the percolation threshold, the charge carriers are constrained in the graphene, making the system a conductor material and creating n-type doping with conductivity values of around 20 S m−1. This phenomenon is a consequence of a change in the mechanism of charge transfer in the interface between the polypropylene molecule and graphene sheet. To describe the charge transfer mechanism, it is necessary to consider the quantum effect. The incorporation of the quantum effects and the percolation phenomenon make it possible for the theoretical conductivity to be close to the conductivity measured experimentally.

中文翻译:

聚丙烯纳米复合材料中多层石墨烯的实验和计算电导率研究

我们研究了由多层石墨烯在聚丙烯中形成的化合物的电导率。我们的研究对实验结果和计算结果进行了比较分析。为了获得电子性能的实验测量结果,我们在聚丙烯基质上沉积了多层石墨烯(MLG)纳米颗粒。沉积过程分几个阶段进行,其中我们使用熔融混合技术将不同百分比的MLG纳米颗粒添加到聚合物基质中,并通过电化学阻抗谱(EIS)研究了纳米复合材料的电导率。第二部分由计算组成,其中我们研究了在单体中具有不同平板的聚丙烯分子下石墨烯片的电子性能。在两项分析中,存在强烈的渗滤现象,其渗滤阈值约为MLG纳米颗粒的18%。在渗透阈值之前,电荷载流子被限制在聚丙烯分子中,使系统成为绝缘材料并产生p型掺杂。在渗流阈值之后,电荷载流子被限制在石墨烯中,使系统成为导体材料,并产生电导率值约为20 S m的n型掺杂-1。该现象是聚丙烯分子与石墨烯片之间的界面中的电荷转移机理改变的结果。为了描述电荷转移机制,有必要考虑量子效应。量子效应和渗流现象的结合使理论电导率接近于实验测得的电导率成为可能。
更新日期:2018-06-15
down
wechat
bug