当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium-lead corrosion behavior of erbium oxide, yttrium oxide and zirconium oxide coatings fabricated by metal organic decomposition
Journal of Nuclear Materials ( IF 2.8 ) Pub Date : 2018-06-15 , DOI: 10.1016/j.jnucmat.2018.06.021
Moeki Matsunaga , Seira Horikoshi , Jumpei Mochizuki , Hikari Fujita , Yoshimitsu Hishinuma , Kanetsugu Isobe , Takumi Hayashi , Takayuki Terai , Yasuhisa Oya , Takumi Chikada

Tritium permeation through and corrosion of structural materials are critical issues in fusion reactor liquid lithium-lead blanket concepts from the viewpoints of an efficient fuel cycle, higher operation rates, and radiological safety. In this study, lithium-lead compatibility of ceramic coatings has been investigated for the development of tritium permeation barriers with corrosion protection. Erbium oxide, yttrium oxide and zirconium oxide coatings were fabricated by a metal organic decomposition method on reduced activation ferritic/martensitic steel F82H substrates. Corrosion and delamination of the coatings were accelerated under a higher oxygen concentration. Under a lower oxygen concentration, zirconium oxide coatings had the best lithium-lead compatibility among three coating materials from surface and cross-sectional observations. However, the zirconium oxide coating after lithium-lead immersion at 550 °C for 500 h showed higher deuterium permeability in comparison to the sample without immersion. Formation of a chromium oxide layer on the surface of the substrate before fabricating the coatings drastically improved the lithium-lead compatibility of erbium oxide and yttrium oxide coatings. Degradation of the coatings was mainly caused by corrosion and delamination depending on immersion temperature, test duration, and impurity concentration.



中文翻译:

金属有机分解制备的氧化er,氧化钇和氧化锆涂层的锂铅腐蚀行为

从有效的燃料循环,更高的运行速率和放射安全性的角度来看,fusion渗透和腐蚀结构材料是聚变反应堆液态锂铅毯概念中的关键问题。在这项研究中,研究了陶瓷涂层的锂铅相容性,以开发具有腐蚀保护作用的tri渗透阻挡层。通过金属有机分解法在还原活化的铁素体/马氏体钢F82H基底上制备了氧化b,氧化钇和氧化锆涂层。在较高的氧气浓度下,涂层的腐蚀和分层加速。从表面和横截面观察,在较低的氧气浓度下,氧化锆涂层在三种涂层材料中具有最佳的锂铅相容性。然而,与未浸渍的样品相比,将锂-铅在550°C的温度下浸泡500 h后的氧化锆涂层显示出更高的氘渗透性。在制造涂层之前在基底表面上形成氧化铬层大大改善了氧化er和氧化钇涂层的锂铅相容性。涂层的降解主要是由腐蚀和分层引起的,具体取决于浸入温度,测试时间和杂质浓度。在制造涂层之前在基底表面上形成氧化铬层大大改善了氧化er和氧化钇涂层的锂铅相容性。涂层的降解主要是由腐蚀和分层引起的,具体取决于浸入温度,测试时间和杂质浓度。在制造涂层之前在基底表面上形成氧化铬层大大改善了氧化er和氧化钇涂层的锂铅相容性。涂层的降解主要是由腐蚀和分层引起的,具体取决于浸入温度,测试时间和杂质浓度。

更新日期:2018-06-15
down
wechat
bug