当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving intermediate temperature performance of Ni-YSZ cermet anodes for solid oxide fuel cells by liquid infiltration of nickel nanoparticles
Journal of Power Sources ( IF 8.1 ) Pub Date : 2018-06-14 , DOI: 10.1016/j.jpowsour.2018.06.027
Yanchen Lu , Paul Gasper , Uday B. Pal , Srikanth Gopalan , Soumendra N. Basu

Liquid infiltration of NiO followed by reduction to form Ni nanoparticle catalysts in solid oxide fuel cell (SOFC) can produce a high density of electrochemical reaction sites. In recent years, electrode architectures utilizing porous oxide substrates with ionic conductivity or mixed ionic-electronic conductivity and connected networks of nickel produced by liquid infiltration have become a popular approach to improve SOFC anode catalytic performance, especially for operating temperatures less than 800 °C. However, infiltrated nickel structures suffer from poor durability, demonstrating significant loss in performance during the first 100 h of use. In contrast, traditional Ni-yttria stabilized zirconia (Ni-YSZ) cermet SOFC anodes exhibit long-term performance stability. However, Ni-YSZ cermet anodes have micron sized structures, and consequently have a significantly lower density of electrochemical reaction site density than infiltrated nickel structures, which have dimensions of around 100 nm. In this study, the performance impact of liquid phase infiltration of nickel nanoparticles into Ni-YSZ cermet anode supported SOFCs is studied by measuring the electrochemical behavior of infiltrated cells at 800 °C, 700 °C, and 600 °C, and comparing them to the performance of an uninfiltrated cell. Durability of the nanoparticles after electrochemical testing is also assessed using a method for quantifying particle statistics from fracture cross sections.



中文翻译:

通过镍纳米颗粒的液体浸渗改善用于固体氧化物燃料电池的Ni-YSZ金属陶瓷阳极的中间温度性能

NiO的液体渗透,然后在固体氧化物燃料电池(SOFC)中还原形成Ni纳米颗粒催化剂,可以产生高密度的电化学反应位点。近年来,利用具有离子电导率或混合的离子电导率的多孔氧化物基底以及通过液体渗透产生的镍的连接网络的电极体系结构已成为改善SOFC阳极催化性能的一种流行方法,尤其是在工作温度低于800°C的情况下。但是,渗透的镍结构的耐用性较差,这表明在使用的前100小时内,性能会显着下降。相反,传统的镍-氧化钇稳定的氧化锆(Ni-YSZ)金属陶瓷SOFC阳极表现出长期的性能稳定性。但是,Ni-YSZ金属陶瓷阳极具有微米级的结构,因此,它的电化学反应位点密度要比渗透的镍结构低得多,后者的尺寸约为100 nm。在这项研究中,通过测量在800°C,700°C和600°C下浸润的电池的电化学行为,并研究了镍纳米颗粒液相浸入Ni-YSZ金属陶瓷阳极负载的SOFC中对性能的影响。未渗透细胞的性能。还使用用于从断裂横截面定量颗粒统计的方法来评估纳米颗粒在电化学测试后的耐久性。通过测量在800°C,700°C和600°C下浸润的电池的电化学行为并将其与碳纳米管的性能进行比较,研究了镍纳米颗粒向Ni-YSZ金属陶瓷阳极负载的SOFC中液相浸渗的性能影响。未浸润的细胞。还使用用于从断裂横截面定量颗粒统计的方法来评估纳米颗粒在电化学测试后的耐久性。通过测量在800°C,700°C和600°C下浸润的电池的电化学行为并将其与碳纳米管的性能进行比较,研究了镍纳米颗粒向Ni-YSZ金属陶瓷阳极负载的SOFC中液相浸渗的性能影响。未浸润的细胞。还使用用于从断裂横截面定量颗粒统计的方法来评估纳米颗粒在电化学测试后的耐久性。

更新日期:2018-06-14
down
wechat
bug