当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design Principles for Directing Energy and Energetic Charge Flow in Multicomponent Plasmonic Nanostructures
ACS Energy Letters ( IF 19.3 ) Pub Date : 2018-06-12 00:00:00 , DOI: 10.1021/acsenergylett.8b00841
Steven Chavez 1 , Umar Aslam 1 , Suljo Linic 1
Affiliation  

The decay of localized surface plasmons supported by plasmonic metal nanoparticles results in the formation of energetic charge carriers within the nanoparticles. Once formed, these charge carriers can transfer to chemically attached materials where they can perform a function. The efficient extraction and utilization of these charge carriers in various applications hinges on the ability to design plasmonic nanostructures with highly localized charge carrier generation at specific locations in the nanostructure. Herein, we shed light on the physical mechanisms governing the flow of energy in resonantly excited multimetallic plasmonic nanoparticles. We demonstrate that coating plasmonic nanostructures with nonplasmonic metals can result in the preferential dissipation of energy (i.e., formation of charge carriers) in the nonplasmonic metal and that the extent of this dissipation depends heavily on the electronic structure of the constituent metals. We use experimental and modeling studies of various core–shell nanostructures to develop a transparent physical framework of energy transfer in these systems and discuss how this framework can be used to engineer nanostructures that allow for high efficiencies of charge carrier extraction.

中文翻译:

指导多组分等离子体纳米结构中能量和高能电荷流的设计原理

由等离激元金属纳米粒子支撑的局部表面等离激元的衰减导致在纳米粒子内形成高能电荷载流子。一旦形成,这些电荷载流子就可以转移到化学附着的材料上,在这里它们可以发挥功能。这些电荷载流子在各种应用中的有效提取和利用取决于设计具有在纳米结构的特定位置处高度局部化的电荷载流子生成的等离子体纳米结构的能力。在本文中,我们阐明了控制共振激发的多金属等离子体纳米颗粒中能量流的物理机制。我们证明用非等离子体金属涂覆等离子体纳米结构可以导致能量的优先耗散(即,在非等离子体金属中形成电荷载流子),这种耗散的程度在很大程度上取决于构成金属的电子结构。我们使用各种核壳纳米结构的实验和模型研究来开发这些系统中能量传递的透明物理框架,并讨论如何使用此框架来设计纳米结构以实现高效的载流子提取。
更新日期:2018-06-12
down
wechat
bug