当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silane-Capped ZnO Nanoparticles for Use as the Electron Transport Layer in Inverted Organic Solar Cells
ACS Nano ( IF 15.8 ) Pub Date : 2018-06-08 00:00:00 , DOI: 10.1021/acsnano.8b01178
Junfeng Wei 1, 2 , Guoqi Ji 1 , Chujun Zhang 3 , Lingpeng Yan 1 , Qun Luo 1 , Cheng Wang 4 , Qi Chen 4 , Junliang Yang 3 , Liwei Chen 4 , Chang-Qi Ma 1
Affiliation  

Zinc oxide (ZnO) nanoparticles are widely used as electron- transport layer (ETL) materials in organic solar cells and are considered to be the candidate with the most potential for ETLs in roll-to-roll (R2R)-printed photovoltaics. However, the tendency of the nanoparticles to aggregate reduces the stability of the metal oxide inks and creates many surface defects, which is a major barrier to its printing application. With the aim of improving the stability of metal oxide nanoparticle dispersions and suppressing the formation of surface defects, we prepared 3-aminopropyltrimethoxysilane (APTMS)-capped ZnO ([email protected]) nanoparticles through surface ligand exchange. The [email protected] nanoparticles exhibited excellent dispersibility in ethanol, an environmentally friendly solvent, and remained stable in air for at least one year without any aggregation. The capping of the ZnO nanoparticles with APTMS also reduced the number of surface-adsorbed oxygen defects, improved the charge transfer efficiency, and suppressed the light-soaking effect. The thickness of the [email protected] ETL could reach 100 nm without an obvious decrease in the performance. Large-area APTMS-modified ZnO films were successfully fabricated through roll-to-roll microgravure printing and exhibited good performance in flexible organic solar cells. This work demonstrated the distinct advantages of this [email protected] ETL as a potential buffer layer for printed organic electronics.

中文翻译:

硅烷覆盖的ZnO纳米粒子用作反向有机太阳能电池中的电子传输层

氧化锌(ZnO)纳米颗粒被广泛用作有机太阳能电池中的电子传输层(ETL)材料,被认为是卷对卷(R2R)印刷光伏电池中ETL潜力最大的候选材料。然而,纳米颗粒聚集的趋势降低了金属氧化物油墨的稳定性并产生许多表面缺陷,这是对其印刷应用的主要障碍。为了提高金属氧化物纳米颗粒分散液的稳定性并抑制表面缺陷的形成,我们通过表面配体交换制备了3-氨基丙基三甲氧基硅烷(APTMS)包覆的ZnO([受电子邮件保护])纳米颗粒。受[电子邮件保护]的纳米颗粒在乙醇(一种环境友好的溶剂)中表现出出色的分散性,并在空气中保持稳定至少一年,没有任何聚集。用APTMS覆盖ZnO纳米颗粒还减少了表面吸附的氧缺陷的数量,提高了电荷转移效率,并抑制了光吸收效果。[受电子邮件保护的] ETL的厚度可以达到100 nm,而性能不会明显下降。大面积APTMS修饰的ZnO膜通过卷对卷微凹版印刷成功制备,并在柔性有机太阳能电池中表现出良好的性能。这项工作证明了此[受电子邮件保护] ETL作为印刷有机电子产品潜在的缓冲层的独特优势。并抑制了光浸效果。[受电子邮件保护的] ETL的厚度可以达到100 nm,而性能不会明显下降。大面积APTMS修饰的ZnO膜通过卷对卷微凹版印刷成功制备,并在柔性有机太阳能电池中表现出良好的性能。这项工作证明了[受电子邮件保护] ETL作为印刷有机电子产品潜在的缓冲层的独特优势。并抑制了光浸效果。[受电子邮件保护的] ETL的厚度可以达到100 nm,而性能不会明显下降。大面积APTMS修饰的ZnO膜通过卷对卷微凹版印刷成功制备,并在柔性有机太阳能电池中表现出良好的性能。这项工作证明了此[受电子邮件保护] ETL作为印刷有机电子产品潜在的缓冲层的独特优势。
更新日期:2018-06-08
down
wechat
bug