当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of CO2 Capture from Simulated Flue Gas Using K2CO3/Al2O3 in a Micro Fluidized Bed Reactor
Energy & Fuels ( IF 5.2 ) Pub Date : 2018-06-08 00:00:00 , DOI: 10.1021/acs.energyfuels.8b00789
Mohsen Amiri 1 , Shahrokh Shahhosseini 1
Affiliation  

The cost-effective dry regenerable K2CO3/Al2O3 seems to be a promising sorbent for CO2 removal from the flue gas of fossil fuel power plants. In this work, the characterization of the carbonation reaction and process optimization were performed in a so-called micro fluidized bed reactor (MFBR), which has recently been applied to study gas–solid reactions. The sorbent was also characterized by BET and SEM techniques. In addition, the most important gas–solid heterogeneous models were evaluated, and the kinetic parameters were determined by the model fitting approach. Based on the kinetic study results, the homogeneous model (HM) and the shrinking core model (SCM) were selected as the reaction models. Also, the effects of the independent variables including temperature, gas flow rate, and vapor pretreatment amount on the responses (adsorption capacity and reaction rate constant) were investigated by the response surface methodology (RSM) coupled with Box–Behnken design (BBD). Regarding to the analysis of variance (ANOVA) results, the temperature and gas flow rate are the most important factors affecting the adsorption capacity and the reaction rate constant, respectively. In addition, the semiempirical polynomials were developed to find the optimum condition corresponding to the highest adsorption capacity and reaction rate. Consequently, the optimum independent variables were 60 °C, 562 CCM, and 22.2 mg of H2O condition for the temperature, gas flow rate, and vapor pretreatment amount, respectively. The best response values of 65.29 mg of CO2/g of sorbent and 0.3402 (min–1) were predicted for the adsorption capacity and reaction rate constant, respectively, at the optimum conditions which were verified experimentally. The presented results are applicable and essential for future simulation and modeling CO2 capture in the fluidized bed reactor.

中文翻译:

在微流化床反应器中使用K 2 CO 3 / Al 2 O 3从模拟烟气中捕集CO 2的优化

具有成本效益的干燥可再生K 2 CO 3 / Al 2 O 3似乎是有前途的CO 2吸附剂从化石燃料发电厂的烟气中去除。在这项工作中,碳化反应的表征和工艺优化是在所谓的微流化床反应器(MFBR)中进行的,该反应器最近已用于研究气固反应。还通过BET和SEM技术表征了吸附剂。此外,评估了最重要的气固非均质模型,并通过模型拟合方法确定了动力学参数。根据动力学研究结果,选择均质模型(HM)和收缩核模型(SCM)作为反应模型。此外,自变量的影响包括温度,气体流速,响应表面方法(RSM)和Box–Behnken设计(BBD)一起研究了蒸汽和预处理量对响应的影响(吸附能力和反应速率常数)。关于方差分析(ANOVA)结果,温度和气体流速分别是影响吸附容量和反应速率常数的最重要因素。另外,开发了半经验多项式以找到与最高吸附容量和反应速率相对应的最佳条件。因此,最佳独立变量为60°C,562 CCM和22.2 mg H 温度和气体流速分别是影响吸附容量和反应速率常数的最重要因素。另外,开发了半经验多项式以找到与最高吸附容量和反应速率相对应的最佳条件。因此,最佳独立变量为60°C,562 CCM和22.2 mg H 温度和气体流速分别是影响吸附容量和反应速率常数的最重要因素。另外,开发了半经验多项式以找到与最高吸附容量和反应速率相对应的最佳条件。因此,最佳独立变量为60°C,562 CCM和22.2 mg H温度,气体流量和蒸汽预处理量分别为2 O条件。在最佳条件下,最佳吸附值和反应速率常数分别为65.29 mg CO 2 / g和0.3402(min –1),并通过实验验证了最佳响应值。所提出的结果对于未来在流化床反应器中的模拟和CO 2捕集的模拟和建模是适用的和必不可少的。
更新日期:2018-06-08
down
wechat
bug