当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evidence for a quantum dipole liquid state in an organic quasi–two-dimensional material
Science ( IF 44.7 ) Pub Date : 2018-06-07 , DOI: 10.1126/science.aan6286
Nora Hassan 1 , Streit Cunningham 1 , Martin Mourigal 2 , Elena I. Zhilyaeva 3 , Svetlana A. Torunova 3 , Rimma N. Lyubovskaya 3 , John A. Schlueter 4, 5 , Natalia Drichko 1
Affiliation  

Quantum dipoles go liquid Quantum spin liquids do not achieve an ordered magnetic state, even at the lowest temperatures. Hassan et al. studied an organic compound that may be both a spin liquid and a dipole liquid (see the Perspective by Powell). In the layered material κ-(BEDT-TTF)2Hg(SCN)2Br, molecules form charged dimers whose sites are arranged on a triangular lattice. The extra charge associated with each dimer can “live” on one of the two molecules in the dimer, resulting in a nonzero electric dipole moment for the dimer. Raman spectroscopy and heat capacity measurements revealed that, like spins in a quantum spin liquid, these dimers remained disordered down to the lowest temperatures. Science, this issue p. 1101; see also p. 1073 Raman spectroscopy and heat capacity reveal the signatures of an exotic state in κ-(BEDT-TTF)2Hg(SCN)2Br. Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF)2Hg(SCN)2Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures.

中文翻译:

有机准二维材料中量子偶极液态的证据

量子偶极子变成液体 量子自旋液体即使在最低温度下也不会达到有序的磁性状态。哈桑等人。研究了一种可能既是自旋液体又是偶极液体的有机化合物(参见鲍威尔的观点)。在层状材料 κ-(BEDT-TTF)2Hg(SCN)2Br 中,分子形成带电二聚体,其位置排列在三角形晶格上。与每个二聚体相关的额外电荷可以“存在”在二聚体中的两个分子之一上,从而导致二聚体的电偶极矩非零。拉曼光谱和热容量测量表明,就像量子自旋液体中的自旋一样,这些二聚体在最低温度下仍保持无序状态。科学,这个问题 p。1101; 另见第。1073 拉曼光谱和热容量揭示了 κ-(BEDT-TTF)2Hg(SCN)2Br 中奇异状态的特征。莫特绝缘体通常被描绘成电子位于晶格位置,它们的低能量自由度仅涉及自旋。在这里,我们观察到基于分子的莫特绝缘体 κ-(BEDT-TTF)2Hg(SCN)2Br 中的涌现电荷自由度,导致量子偶极液态。位于分子二聚体晶格位点上的电子形成电偶极子,在低温下不排序,并随着我们拉曼光谱实验中实验检测到的频率而波动。热容量和拉曼散射响应与复合自旋和电偶极子自由度保持波动到最低测量温度的情况一致。我们观察到基于分子的莫特绝缘体 κ-(BEDT-TTF)2Hg(SCN)2Br 中的涌现电荷自由度,导致量子偶极液态。位于分子二聚体晶格位点上的电子形成电偶极子,在低温下不排序,并随着我们拉曼光谱实验中实验检测到的频率而波动。热容和拉曼散射响应与复合自旋和电偶极子自由度保持波动到最低测量温度的情况一致。我们观察到基于分子的莫特绝缘体 κ-(BEDT-TTF)2Hg(SCN)2Br 中的涌现电荷自由度,导致量子偶极液态。位于分子二聚体晶格位点上的电子形成电偶极子,在低温下不排序,并随着我们拉曼光谱实验中实验检测到的频率而波动。热容和拉曼散射响应与复合自旋和电偶极子自由度保持波动到最低测量温度的情况一致。位于分子二聚体晶格位点上的电子形成电偶极子,在低温下不排序,并随着我们拉曼光谱实验中实验检测到的频率而波动。热容和拉曼散射响应与复合自旋和电偶极子自由度保持波动到最低测量温度的情况一致。位于分子二聚体晶格位点上的电子形成电偶极子,在低温下不排序,并随着我们拉曼光谱实验中实验检测到的频率而波动。热容和拉曼散射响应与复合自旋和电偶极子自由度保持波动到最低测量温度的情况一致。
更新日期:2018-06-07
down
wechat
bug